Skip to main content

Tracking the Secretion of Fluorescently Labeled Type III Effectors from Single Bacteria in Real Time

  • Protocol
  • First Online:
Protein Secretion

Part of the book series: Methods in Molecular Biology ((MIMB,volume 619))

Abstract

A large number of Gram negative pathogens use a specialized needle-like molecular machine known as Type III Secretion (T3S) system. This highly sophisticated molecular device consists of a basal body spanning the two bacterial membranes and a protruding needle structure that is connected to a distal translocator complex. The main features of the T3S system are (i) activation after host cellular membrane contact and (ii) the ability to “inject” effectors into host cells through the needle apparatus across three membranous structures––two bacterial and one host cellular––without effector leakage into the exterior space. The effector proteins execute multiple roles upon translocation including re-arranging the host cytoskeleton, manipulating signaling pathways and reprogramming the host immune response. We have established a novel approach to monitor the secretion of fluorescently labeled effectors through the T3S system of single living bacteria in real time. Our approach uses the tetracysteine-FlAsH labeling procedure. Here, we provide a detailed protocol and advice on its potential and experimental pitfalls. Using the entero-invasive pathogen Shigella flexneri for assay development, we have also successfully adapted our approach and developed procedures for T3S effector tracking for other pathogens such as Enteropathogenic Escherichia coli (EPEC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cornelis, G. R. (2006). The type III secretion injectisome. Nat Rev Microbiol, 4, 811–825.

    Article  CAS  PubMed  Google Scholar 

  2. Rosqvist, R., Magnusson, K. E., and Wolf-Watz, H. (1994). Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J, 13, 964–972.

    CAS  PubMed  Google Scholar 

  3. Troisfontaines, P., and Cornelis, G. R. (2005). Type III secretion: more systems than you think. Physiology (Bethesda), 20, 326–339.

    CAS  Google Scholar 

  4. Pallen, M. J., Penn, C. W., and Chaudhuri, R. R. (2005). Bacterial flagellar diversity in the post-genomic era. Trends Microbiol, 13, 143–149.

    Article  CAS  PubMed  Google Scholar 

  5. Journet, L., Agrain, C., Broz, P., and Cornelis, G. R. (2003). The needle length of bacterial injectisomes is determined by a molecular ruler. Science, 302, 1757–1760.

    Article  CAS  PubMed  Google Scholar 

  6. Blocker, A. J., Deane, J. E., Veenendaal, A. K., Roversi, P., Hodgkinson, J. L., Johnson, S., and Lea, S. M. (2008). What’s the point of the type III secretion system needle? Proc Natl Acad Sci USA, 105, 6507–6513.

    Article  CAS  PubMed  Google Scholar 

  7. Woestyn, S., Allaoui, A., Wattiau, P., and Cornelis, G. R. (1994). YscN, the putative energizer of the Yersinia Yop secretion machinery. J Bacteriol, 176, 1561–1569.

    CAS  PubMed  Google Scholar 

  8. Galan, J. E. Energizing type III secretion machines: what is the fuel? Nat Struct Mol Biol 2008, 15, 127–128.

    Article  CAS  PubMed  Google Scholar 

  9. Sory, M. P., and Cornelis, G. R. (1994). Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol, 14, 583–594.

    Article  CAS  PubMed  Google Scholar 

  10. Day, J. B., Ferracci, F., and Plano, G. V. (2003). Translocation of YopE and YopN into eukaryotic cells by Yersinia pestis yopN, tyeA, sycN, yscB and lcrG deletion mutants measured using a phosphorylatable peptide tag and phosphospecific antibodies. Mol Microbiol, 47, 807–823.

    Article  CAS  PubMed  Google Scholar 

  11. Briones, G., Hofreuter, D., and Galan, J. E. (2006). Cre reporter system to monitor the translocation of type III secreted proteins into host cells. Infect Immun, 74, 1084–1090.

    Article  CAS  PubMed  Google Scholar 

  12. Charpentier, X., and Oswald, E. (2004). Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol, 186, 5486–5495.

    Article  CAS  PubMed  Google Scholar 

  13. Mills, E., Baruch, K., Charpentier, X., Kobi, S., and Rosenshine, I. (2008). Real-time analysis of effector translocation by the type III secretion system of enteropathogenic Escherichia coli. Cell Host Microbe, 3, 104–113.

    Article  CAS  PubMed  Google Scholar 

  14. Schlumberger, M. C., Muller, A. J., Ehrbar, K., Winnen, B., Duss, I., Stecher, B., and Hardt, W. D. (2005). Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc Natl Acad Sci USA, 102, 12548–12553.

    Article  CAS  PubMed  Google Scholar 

  15. Griffin, B. A., Adams, S. R., and Tsien, R. Y. (1998). Specific covalent labeling of recombinant protein molecules inside live cells. Science, 281, 269–272.

    Article  CAS  PubMed  Google Scholar 

  16. Gaietta, G., Deerinck, T. J., Adams, S. R., Bouwer, J., Tour, O., Laird, D. W., Sosinsky, G. E., Tsien, R. Y., and Ellisman, M. H. (2002). Multicolor and electron microscopic imaging of connexin trafficking. Science, 296, 503–507.

    Article  CAS  PubMed  Google Scholar 

  17. Adams, S. R., Campbell, R. E., Gross, L. A., Martin, B. R., Walkup, G. K., Yao, Y., Llopis, J., and Tsien, R. Y. (2002). New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc, 124, 6063–6076.

    Article  CAS  PubMed  Google Scholar 

  18. Ignatova, Z., and Gierasch, L. M. (2004). Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci USA, 101, 523–528.

    Article  CAS  PubMed  Google Scholar 

  19. Enninga, J., Mounier, J., Sansonetti, P., and Tran Van Nhieu, G. (2005). Secretion of type III effectors into host cells in real time. Nat Methods, 2, 959–965.

    Article  CAS  PubMed  Google Scholar 

  20. Jaumouille, V., Francetic, O., Sansonetti, P. J., and Tran Van Nhieu, G. (2008). Cytoplasmic targeting of IpaC to the bacterial pole directs polar type III secretion in Shigella. EMBO J, 27, 447–457.

    Article  CAS  PubMed  Google Scholar 

  21. Van Engelenburg, S. B., and Palmer, A. E. (2008). Quantification of real-time Salmonella effector type III secretion kinetics reveals differential secretion rates for SopE2 and SptP. Chem Biol, 15, 619–628.

    Article  PubMed  Google Scholar 

  22. Clerc, P. L., Ryter, A., Mounier, J., and Sansonetti, P. J. (1987). Plasmid-mediated early killing of eucaryotic cells by Shigella flexneri as studied by infection of J774 macrophages. Infect Immun, 55, 521–527.

    CAS  PubMed  Google Scholar 

  23. Menard, R., Sansonetti, P. J., and Parsot, C. (1993). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol, 175, 5899–5906.

    CAS  PubMed  Google Scholar 

  24. Allaoui, A., Sansonetti, P. J., and Parsot, C. (1993). MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri lpa invasins. Mol Microbiol, 7, 59–68.

    Article  CAS  PubMed  Google Scholar 

  25. Martin, B. R., Giepmans, B. N., Adams, S. R., and Tsien, R. Y. (2005). Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol, 23, 1308–1314.

    Article  CAS  PubMed  Google Scholar 

  26. Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol, 177, 4121–4130.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Guy Tran Van Nhieu and Philippe Sansonetti for continuing support. Jost Enninga was supported by an HFSPO fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Simpson, N., Audry, L., Enninga, J. (2010). Tracking the Secretion of Fluorescently Labeled Type III Effectors from Single Bacteria in Real Time. In: Economou, A. (eds) Protein Secretion. Methods in Molecular Biology, vol 619. Humana Press. https://doi.org/10.1007/978-1-60327-412-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-412-8_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-167-7

  • Online ISBN: 978-1-60327-412-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics