Skip to main content

Autofluorescent Proteins for Flow Cytometry

  • Protocol
Reporter Genes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 411))

Abstract

The unique spectral properties and versatility of autofluorescent proteins have facilitated their widespread use in flow cytometric applications. The ability to analyze heterologous fluorescent protein expression conveniently and noninvasively by individually interrogating cells has facilitated increasingly more sophisticated experimental designs to address important biological questions. Improved multilaser flow cytometers have allowed the fluorescent protein field to flourish by permitting high-speed, multiparametric analysis of biological samples. Fluorescent proteins are well suited for either transient or stable expression analysis. Therefore, achieving efficient gene transfer and expression in cells by transfection or viral transduction is paramount to the optimal use of fluorescent proteins in flow cytometry. The archetypal autofluorescent protein, enhanced green fluorescent protein (eGFP), can be used successfully in combination with other fluorescent protein variants. Two such variants, Cerianthus sp. orange fluorescent protein (cOFP) and a fast maturing variant of Discosoma sp. red protein (DsREDExpress), are well suited for flow cytometric applications in combination with eGFP and do not require special filters for optimal excitation and detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  2. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91,12, 501–12,504.

    Google Scholar 

  3. Heim, R. and Tsien, R. Y. (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182.

    Article  PubMed  CAS  Google Scholar 

  4. Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.

    Article  PubMed  CAS  Google Scholar 

  5. Yang, T. T., Cheng, L., and Kain, S. R. (1996) Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 24, 4592–4593.

    Article  PubMed  CAS  Google Scholar 

  6. Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909.

    Article  PubMed  CAS  Google Scholar 

  7. Hawley, T. S., Telford, W. G., Ramezani, A., and Hawley, R. G. (2001) Fourcolor flow cytometric detection of retrovirally expressed red, yellow, green, and cyan fluorescent proteins. Biotechniques 30, 1028–1034.

    PubMed  CAS  Google Scholar 

  8. Bevis, B. J. and Glick, B. S. (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat. Biotechnol. 20, 83–87.

    Article  PubMed  CAS  Google Scholar 

  9. Ip, D., Chan, S.-H., Allen, M., Bycroft, M., Wan, D., and Wong, K.-B. (2004) Crystallization and preliminary crystallographic analysis of a novel orange fluorescent protein from the Cnidaria tube anemone Cerianthus sp. Acta Crystallograph. D60, 340–341.

    CAS  Google Scholar 

  10. Jordan, M., Schallhorn, A., and Wurm, F. M. (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24, 596–601.

    Article  PubMed  CAS  Google Scholar 

  11. Pear, W. (1996) Transient transfection methods for high-titre retroviral supernatants, in Current Protocols in Molecular Biology (Ausubel, F. M., Brent, R., Kingston, R. E., et al., eds.), John Wiley & Sons, New York, pp. 9.11.11–9.11.18.

    Google Scholar 

  12. Miller, A. D. and Rosman, G. J. (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–982, 984–986, 989–990.

    PubMed  CAS  Google Scholar 

  13. Bartz, S. R. and Vodicka, M. A. (1997) Production of high-titer human immunodeficiency virus type 1 pseudotyped with vesicular stomatitis virus glycoprotein. Methods 12, 337–342.

    Google Scholar 

  14. Koldej, R., Cmielewski, P., Stocker, A., Parsons, D. W., and Anson, D. S. (2005) Optimisation of a multipartite human immunodeficiency virus based vector system; control of virus infectivity and large-scale production. J. Gene Med. 7, 1390–1399.

    Article  PubMed  CAS  Google Scholar 

  15. Forestell, S. P., Dando, J. S., Bohnlein, E., and Rigg, R. J. (1996) Improved detection of replication-competent retrovirus. J. Virol. Methods 60, 171–178.

    Article  PubMed  CAS  Google Scholar 

  16. Luthman, H. and Magnusson, G. (1983) High efficiency polyoma DNA transfection of chloroquine treated cells. Nucleic Acids Res. 11, 1295–1308.

    Article  PubMed  CAS  Google Scholar 

  17. Hanenberg, H., Xiao, X. L., Dilloo, D., Hashino, K., Kato, I., and Williams, D. A. (1996) Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat. Methods 2, 876–882.

    Article  CAS  Google Scholar 

  18. Rasko, J. E. J. (1999) Reporters of gene expression: autofluorescent proteins, in Current Protocols in Cytometry (Robinson, J. P., Zbigniew, P. N., Dressler, L. G., et al., eds.), John Wiley & Sons, Inc, New York, pp. 9.12.11–19.12.16.

    Google Scholar 

  19. Alexander, I. E., Russell, D. W., and Miller, A. D. (1997) Transfer of contaminants in adeno-associated virus vector stocks can mimic transduction and lead to artifactual results. Hum. Gene Ther. 8, 1911–1920.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bailey, C.G., Rasko, J.E.J. (2007). Autofluorescent Proteins for Flow Cytometry. In: Anson, D.S. (eds) Reporter Genes. Methods in Molecular Biology, vol 411. Humana Press. https://doi.org/10.1007/978-1-59745-549-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-549-7_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-739-6

  • Online ISBN: 978-1-59745-549-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics