Skip to main content

ChIP on Chip Assays: Genome-Wide Analysis of Transcription Factor Binding and Histone Modifications

  • Protocol
  • First Online:
Chromatin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 523))

Abstract

Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin-modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, allow us to determine the entire spectrum of in vivo DNA-binding sites for a given protein. This has been of immense value because ChIP on chip assays can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This article outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garner, M.M., and Revzin, A. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9:3047–3060.

    Article  PubMed  CAS  Google Scholar 

  2. Fried, M., and Crothers, D.M. 1981. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9:6505–6525.

    Article  PubMed  CAS  Google Scholar 

  3. Hecht, A., and Grunstein, M. 1999. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol 304:399–414.

    Article  PubMed  CAS  Google Scholar 

  4. Kirmizis, A., and Farnham, P.J. 2004. Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med (Maywood) 229:705–721.

    CAS  Google Scholar 

  5. Squazzo, S.L., O'Geen, H., Komashko, V.M., Krig, S.R., Jin, V.X., Jang, S.W., Margueron, R., Reinberg, D., Green, R., and Farnham, P.J. 2006. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 16:890–900.

    Article  PubMed  CAS  Google Scholar 

  6. Buck, M.J., and Lieb, J.D. 2004. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360.

    Article  PubMed  CAS  Google Scholar 

  7. Orlando, V. 2000. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104.

    Article  PubMed  CAS  Google Scholar 

  8. Wells, J., and Farnham, P.J. 2002. Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 26:48–56.

    Article  PubMed  CAS  Google Scholar 

  9. Umlauf, D., Goto, Y., and Feil, R. 2004. Site-specific analysis of histone methylation and acetylation. Methods Mol Biol 287:99–120.

    PubMed  CAS  Google Scholar 

  10. Litt, M.D., Simpson, M., Recillas-Targa, F., Prioleau, M.N., and Felsenfeld, G. 2001. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. Embo J 20:2224–2235.

    Article  PubMed  CAS  Google Scholar 

  11. Hebbes, T.R., Clayton, A.L., Thorne, A.W., and Crane-Robinson, C. 1994. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. Embo J 13:1823–1830.

    PubMed  CAS  Google Scholar 

  12. Oberley, M.J., Tsao, J., Yau, P., and Farnham, P.J. 2004. High-throughput screening of chromatin immunoprecipitates using CpG-island microarrays. Methods Enzymol 376:315–334.

    Article  PubMed  CAS  Google Scholar 

  13. Oberley, M.J., Inman, D.R., and Farnham, P.J. 2003. E2F6 negatively regulates BRCA1 in human cancer cells without methylation of histone H3 on lysine 9. J Biol Chem 278:42466–42476.

    Article  PubMed  CAS  Google Scholar 

  14. Bieda, M., Xu, X., Singer, M.A., Green, R., and Farnham, P.J. 2006. Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res 16:595–605.

    Article  PubMed  CAS  Google Scholar 

  15. Jin, V.X., Rabinovich, A., Squazzo, S.L., Green, R., and Farnham, P.J. 2006. A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data – a case study using E2F1. Genome Res 16:1585–1595.

    Article  PubMed  CAS  Google Scholar 

  16. Ferea, T.L., and Brown, P.O. 1999. Observing the living genome. Curr Opin Genet Dev 9:715–722.

    Article  PubMed  CAS  Google Scholar 

  17. Sikder, D., and Kodadek, T. 2005. Genomic studies of transcription factor-DNA interactions. Curr Opin Chem Biol 9:38–45.

    Article  PubMed  CAS  Google Scholar 

  18. Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X.C., Stern, D., Winkler, J., Lockhart, D.J., Morris, M.S., and Fodor, S.P. 1996. Accessing genetic information with high-density DNA arrays. Science 274:610–614.

    Article  PubMed  CAS  Google Scholar 

  19. Cawley, S., Bekiranov, S., Ng, H.H., Kapranov, P., Sekinger, E.A., Kampa, D., Piccolboni, A., Sementchenko, V., Cheng, J., Williams, A.J., et al. 2004. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499–509.

    Article  PubMed  CAS  Google Scholar 

  20. Kondo, Y., Shen, L., Yan, P.S., Huang, T.H., and Issa, J.P. 2004. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci U S A 101:7398–7403.

    Article  PubMed  CAS  Google Scholar 

  21. Wells, J., Yan, P.S., Cechvala, M., Huang, T., and Farnham, P.J. 2003. Identification of novel pRb binding sites using CpG microarrays suggests that E2F recruits pRb to specific genomic sites during S phase. Oncogene 22:1445–1460.

    Article  PubMed  CAS  Google Scholar 

  22. Kirmizis, A., Bartley, S.M., Kuzmichev, A., Margueron, R., Reinberg, D., Green, R., and Farnham, P.J. 2004. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18:1592–1605.

    Article  PubMed  CAS  Google Scholar 

  23. Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., and Brown, P.O. 2001. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409:533–538.

    Article  PubMed  CAS  Google Scholar 

  24. Horak, C.E., Luscombe, N.M., Qian, J., Bertone, P., Piccirrillo, S., Gerstein, M., and Snyder, M. 2002. Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev 16:3017–3033.

    Article  PubMed  CAS  Google Scholar 

  25. Horak, C.E., and Snyder, M. 2002. Global analysis of gene expression in yeast. Funct Integr Genomics 2:171–180.

    Article  PubMed  CAS  Google Scholar 

  26. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., et al. 2002. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804.

    Article  PubMed  CAS  Google Scholar 

  27. Horak, C.E., Mahajan, M.C., Luscombe, N.M., Gerstein, M., Weissman, S.M., and Snyder, M. 2002. GATA-1 binding sites mapped in the beta-globin locus by using mammalian chIp-chip analysis. Proc Natl Acad Sci U S A 99:2924–2929.

    Article  PubMed  CAS  Google Scholar 

  28. Weinmann, A.S., Yan, P.S., Oberley, M.J., Huang, T.H., and Farnham, P.J. 2002. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 16:235–244.

    Article  PubMed  CAS  Google Scholar 

  29. Bernstein, B.E., Humphrey, E.L., Erlich, R.L., Schneider, R., Bouman, P., Liu, J.S., Kouzarides, T., and Schreiber, S.L. 2002. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 99:8695–8700.

    Article  PubMed  CAS  Google Scholar 

  30. Reid, J.L., Iyer, V.R., Brown, P.O., and Struhl, K. 2000. Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 6:1297–1307.

    Article  PubMed  CAS  Google Scholar 

  31. Kurdistani, S.K., Tavazoie, S., and Grunstein, M. 2004. Mapping global histone acetylation patterns to gene expression. Cell 117:721–733.

    Article  PubMed  CAS  Google Scholar 

  32. Fusaro, G., Dasgupta, P., Rastogi, S., Joshi, B., and Chellappan, S. 2003. Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278:47853–47861.

    Article  PubMed  CAS  Google Scholar 

  33. Joshi, B., Ordonez-Ercan, D., Dasgupta, P., and Chellappan, S. 2005. Induction of human metallothionein 1G promoter by VEGF and heavy metals: differential involvement of E2F and metal transcription factors. Oncogene 24:2204–2217.

    Article  PubMed  CAS  Google Scholar 

  34. Dasgupta, P., Betts, V., Rastogi, S., Joshi, B., Morris, M., Brennan, B., Ordonez-Ercan, D., and Chellappan, S. 2004. Direct binding of apoptosis signal-regulating kinase 1 to retinoblastoma protein: novel links between apoptotic signaling and cell cycle machinery. J Biol Chem 279:38762–38769.

    Article  PubMed  CAS  Google Scholar 

  35. Thorne, A.W., Myers, F.A., and Hebbes, T.R. 2004. Native chromatin immunoprecipitation. Methods Mol Biol 287:21–44.

    PubMed  CAS  Google Scholar 

  36. Dorbic, T., and Wittig, B. 1986. Isolation of oligonucleosomes from active chromatin using HMG17-specific monoclonal antibodies. Nucleic Acids Res 14:3363–3376.

    Article  PubMed  CAS  Google Scholar 

  37. Dorbic, T., and Wittig, B. 1987. Chromatin from transcribed genes contains HMG17 only downstream from the starting point of transcription. Embo J 6:2393–2399.

    PubMed  CAS  Google Scholar 

  38. Yoshida, A., and Ueda, T. 2003. Human AP endonuclease possesses a significant activity as major 3′–5′ exonuclease in human leukemia cells. Biochem Biophys Res Commun 310:522–528.

    Article  PubMed  CAS  Google Scholar 

  39. Yoshida, A., Urasaki, Y., Waltham, M., Bergman, A.C., Pourquier, P., Rothwell, D.G., Inuzuka, M., Weinstein, J.N., Ueda, T., Appella, E., et al. 2003. Human apurinic/apyrimidinic endonuclease (Ape1) and its N-terminal truncated form (AN34) are involved in DNA fragmentation during apoptosis. J Biol Chem 278:37768–37776.

    Article  PubMed  CAS  Google Scholar 

  40. Boyd, K.E., Wells, J., Gutman, J., Bartley, S.M., and Farnham, P.J. 1998. c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc Natl Acad Sci U S A 95:13887–13892.

    Article  PubMed  CAS  Google Scholar 

  41. O'Geen, H., Nicolet, C.M., Blahnik, K., Green, R., and Farnham, P.J. 2006. Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 41:577–580.

    Article  PubMed  Google Scholar 

  42. Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R., and Young, R.A. 2007. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130:77–88.

    Article  PubMed  CAS  Google Scholar 

  43. Lee, T.I., Johnstone, S.E., and Young, R.A. 2006. Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748.

    Article  PubMed  CAS  Google Scholar 

  44. Kurdistani, S.K., and Grunstein, M. 2003. In vivo protein-protein and protein-DNA crosslinking for genomewide binding microarray. Methods 31:90–95.

    Article  PubMed  CAS  Google Scholar 

  45. Wu, J., Smith, L.T., Plass, C., and Huang, T.H. 2006. ChIP-chip comes of age for genome-wide functional analysis. Cancer Res 66:6899–6902.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Studies in the author’s laboratory are supported by the grants CA63136, CA77301, and CA127725 from the NIH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pillai, S., Chellappan, S.P. (2009). ChIP on Chip Assays: Genome-Wide Analysis of Transcription Factor Binding and Histone Modifications. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 523. Humana Press. https://doi.org/10.1007/978-1-59745-190-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-190-1_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-873-7

  • Online ISBN: 978-1-59745-190-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics