Skip to main content
Log in

The role of modeling in the development of advanced processes for metallic aerospace alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The application of various modeling techniques in the design and control of a number of emerging processes for aerospace alloys is summarized. These techniques include those that are based on melting and solidification (electron-beam cold-hearth melting, laser deposition), deformation (severe-plastic deformation), rapid heat treatment (dual-microstructure processing), and metal removal (distortion-free machining, high-speed machining). The models that have been developed and applied to these processes include those that are largely phenomenological (e.g., continuum FEM codes) or mechanism based. The key elements of models for various processes, important analytical/numerical results, and how these results are or can be used for manufacturing design are summarized. Challenges for the further development and application of the models for industrial processes are also described. These include refinement of the physics-based understanding of the processes and measurement of various material properties that are needed to apply the models in a real-world manufacturing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mitchell,Iron Steel Inst. Jpn. Inter. 32, 557 (1992).

    CAS  Google Scholar 

  2. J. T. Schriempf, E. J. Whitney, P. A. Blomquist, and F. G. Arcella,Advances in Powder Metallurgy and Particulate Materials 3, 21 (1997).

    Google Scholar 

  3. Y. T. Zhu, T. G. Langdon, R. Z. Valiev, S. L. Semiatin, D. H. Shin, and T. C. Lowe,Ultrafine Grained Materials III, TMS, Warrendale, PA (2004).

    Google Scholar 

  4. S. L. Semiatin and I. M. Sukonnik,Physical Simulation of Casting, Hot Rolling, and Welding (eds., H. G. Suzuki, T. Sakai, and F. Matsuda), p. 395, Dynamic System Inc., Poestenkill, NY (1997).

    Google Scholar 

  5. O. M. Ivasishin, P. E. Markovsky, Yu. V. Matviychuk, and S. L. Semiatin,Metall. Mater. Trans. A 34, 147 (2003).

    Article  Google Scholar 

  6. Y. Yin, W. T. Wu, S. Srivatsa, S. L. Semiatin, and J. Gayda,NUMIFORM 2004 (eds., S. Ghosh, J. M. Castro, and J. K. Lee), p. 400, Columbus, Ohio (2004).

  7. R. Komanduri, D. G. Flom, and M. Lee,J. Eng. for Industry, Trans. ASME 107, 325 (1985).

    Article  Google Scholar 

  8. A. Mitchell,Mater. Sci. Eng. A 243, 257 (1998).

    Article  Google Scholar 

  9. J. R. Wood,JOM 54, 56 (2002).

    Article  CAS  Google Scholar 

  10. J. P. Bellott, B. Foster, S. Hans, E. Hess, D. Ablitzer, and A. Mitchell,Metall. Mater. Trans. B 28, 1001 (1997).

    Article  Google Scholar 

  11. X. Huang, J. S. Chou, K. O. Yu, D. J. Tilly, and V. Suri,Physical Simulation of Casting, Hot Rolling, and Welding (eds., H. G. Suzuki, T. Sakai, and F. Matsuda), p. 489, Dynamic Systems Inc., Poestenkil, NY (1997).

    Google Scholar 

  12. A. Powell, J. Van den Avyle, B. Damkroger, J. Szekely, and U. Pal,Metall. Mater. Trans. B 28, 1227 (1997).

    Article  Google Scholar 

  13. I. Langmuir,Phys. Rev. 5, 329 (1913).

    Article  ADS  Google Scholar 

  14. V. G. Ivanchenko, O. M. Ivasishin, and S. L. Semiatin,Metall. Mater. Trans. B 34, 911 (2003).

    Article  Google Scholar 

  15. S. V. Akhonin, N. P. Trigub, V. N. Zamkov, and S. L. Semiatin,Metall. Mater. Trans. B 34, 447 (2003).

    Article  Google Scholar 

  16. T. Isawa, H. Nakamura, and K. Murakami,ISIJ Int. 32, 607 (1992).

    Article  CAS  Google Scholar 

  17. S. L. Semiatin, V. G. Ivanchenko, S. V. Akhonin, and O. M. Ivasishi,Metall. Mater. Trans. B 35, 235 (2004).

    Article  Google Scholar 

  18. H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids, Oxford University Press, London (1959).

    Google Scholar 

  19. H. Zhuk, P. A. Kobryn, and S. L. Semiatin, Paper submitted toScripta mater. (2004).

  20. P. A. Kobryn and S. L. Semiatin,J. Matter. Proc. Tech. 135, 330 (2003).

    Article  CAS  Google Scholar 

  21. D. M. Keicher, W. D. Miller, J. E. Smugeresky, and J. A. Romero,Hard Coatings Based on Borides, Carbides & Nitrides: Synthesis, Characterization & Applications (eds., Y-W. Chung, R. W. J. Chia, and A. Kumar), p. 369, TMS, Warrendale, PA (1998).

    Google Scholar 

  22. V. Semak, Unpublished research, Pennsylvania State University, State College, PA (1996).

  23. J. L. Beuth and N. W. Klingbeil,JOM 53, 36 (2001).

    Article  CAS  Google Scholar 

  24. A. Vasinonta, J. L. Beuth, and M. L. Griffith,Solid Freeform Fabrication Proceedings (eds., D. L. Bourell, J. J. Beaman, R. H. Crawford, H. L. Marcus, and J. W. Barlow), p. 200, University of Texas, Austin, Texas (2000).

    Google Scholar 

  25. N. W. Klingbeil, C. J. Brown, S. Bontha, P. A. Kobryn, and H. L. Fraser,Solid Freeform Fabrication Proceedings (eds., D. L. Bourell, R. H. Crawford, J. J. Beaman, K. L. Wood, and H. L. Marcus) p. 142, University of Texas, Austin, Texas (2002).

    Google Scholar 

  26. ProCASTTM Users Manual & Technical References, Version 3.1.0. UES Software Inc., Dayton, OH (1998).

  27. J. D. Hunt,Mater. Sci. Eng. A 65, 73 (1984).

    Article  ADS  Google Scholar 

  28. P. A. Kobryn, N. W. Klingbeil, and C. J. Brown, Unpublished research, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH (2003).

  29. V. M. Segal,Mater. Sci. Eng. A 197, 157 (1995).

    Article  Google Scholar 

  30. Y. Beygelzimer, D. Orlov, and V. Varyukhin,Ultrafine Grained Materials II (eds., Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T. C. Lowe), p. 297, TMS, Warrendale, PA (2002).

    Google Scholar 

  31. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov,Russ. Metall. 1, 99 (1981).

    Google Scholar 

  32. V. M. Segal,Mater. Sci. Eng. A 271, 322 (1999).

    Article  Google Scholar 

  33. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T. G. Langdon,Scripta mater. 35, 143 (1996).

    Article  CAS  Google Scholar 

  34. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon,Mater. Sci. Eng. A 257, 328 (1998).

    Article  Google Scholar 

  35. A. Gholinia, P. Bate, and P. B. Prangnell,Acta mater. 50, 2121 (2002).

    Article  CAS  Google Scholar 

  36. I. J. Beyerlein, S. Li, D. J. Alexander, C. T. Necker, C. N. Tome', and M. A. Bourke,Ultrafine Grained Materials III (eds., Y. T. Zhu, T. G. Langdon, R. Z. Valiev, S. L. Semiatin D. H. Shin, and T. C. Lowe), p. 185, TMS, Warrendale, PA (2004).

    Google Scholar 

  37. L. S. Toth,Advanced Engineering Materials 5, 308 (2003).

    Article  Google Scholar 

  38. L. S. Toth, R. A. Massion, L. Germain, S. C. Baik, and S. Suwas,Acta mater. 52, 1885 (2004).

    Article  CAS  Google Scholar 

  39. J-Y. Suh, H-S. Kim, J-W. Park, and J-Y. Chang,Scripta mater. 44, 677 (2001).

    Article  CAS  Google Scholar 

  40. R. Srinivasan,Scripta mater. 44, 91, (2001).

    Article  CAS  Google Scholar 

  41. Y-L. Yang and S. Lee,J. Mater. Proc. Tech. 140, 583 (2003).

    Article  Google Scholar 

  42. S. J. Oh and S. B. Kang,Mater. Sci. Eng. A 343, 107 (2003).

    Article  Google Scholar 

  43. X. Kaculi,Proc. 2003 ASME Inter. Mech. Eng. Congress, p. 1, ASME, New York (2003).

    Google Scholar 

  44. S. C. Baik, Y. Estrin, H. S. Kim, and R. J. Hellmig,Mater. Sci. Eng. A 351, 86 (2003).

    Article  CAS  Google Scholar 

  45. S. Ferrasse, V. M. Segal, S. R. Kalidindi, and F. Alford,Mat. Sci. Eng. A 368, 28 (2004).

    Article  CAS  Google Scholar 

  46. S. R. Agnew, PhD Thesis, Northwestern University (1998).

  47. S. L. Semiatin, V. M. Segal, R. E. Goforth, N. Frey, and D. P. DeLo,Metall. Mater. Trans A 30, 1425 (1999).

    Article  Google Scholar 

  48. S. L. Semiatin and J. J. Jonas,Formability and Workability of Metals, ASM, Materials Park, OH (1984).

    Google Scholar 

  49. D. P. DeLo and S. L. Semiatin,Metall. Mater. Trans. A 30, 1391 (1999).

    Article  Google Scholar 

  50. S. L. Semiatin, D. P. DeLo, and E. B. Shell,Acta mater. 48, 1841 (2000).

    Article  CAS  Google Scholar 

  51. P. N. Fagin, J. O. Brown, T. M. Brown, K. V., Jata, and S. L., Semiatin,Metall. Mater. Trans. A 32, 1869 (2001).

    Article  Google Scholar 

  52. M. G. Cockcroft and D. J. Latham,J. Inst. Metals 96, 33 (1968).

    CAS  Google Scholar 

  53. R. Lapovok,Inter. J. Fracture 115, 159 (2002).

    Article  CAS  Google Scholar 

  54. R. Ye. Lapovok and R. E. Cottam,Ultrafine Grained Materials II (eds., Y. T. Zhu, T. G. Langdon, R. S. Mishra, S. L. Semiatin M. J. Saran T. C. Lowe), p. 547, TMS, Warrendale, PA, (2002).

    Google Scholar 

  55. D. Furrer and J. Gayda,Advanced Materials and Processes 161, 36 (2003).

    Google Scholar 

  56. J. M. Hyzak, C. A. MacIntyre, and D. V. Sundberg,Superalloys 1988 (eds., S. Reichmannet al.), p. 121, TMS (1988).

  57. O. M. Ivasishin and S. L. Semiatin,Proc. THERMEC 2000 (eds., T. Chandraet al.), Elsevier Science Ltd., Amsterdam, The Netherlands (2001) (pdf only).

    Google Scholar 

  58. O. M. Ivasishin,Sixth World Conference on Titanium (eds., P. Lacombe, R. Tricot, G. Beranger), p. 1535, Societé Francaise de Metallurgie, Les Ulis Cedex, France (1998).

    Google Scholar 

  59. O. M. Ivasishin and H. M. Flower,J. Mater. Sci. 21, 2519 (1986).

    Article  ADS  CAS  Google Scholar 

  60. S. L. Semiatin, J. C. Soper, and I. M. Sukonnik,Acta mater. 44, 1979 (1996).

    Article  CAS  Google Scholar 

  61. S. L. Semiatin, P. N. Fagin, M. G. Glavicic, I. M. Sukonnik, and O. M. Ivasishin,Mater. Sci. Eng. A 299, 225 (2001).

    Article  Google Scholar 

  62. O. M. Ivasishin, S. V. Shevchenko, and S. L. Semiatin,Mater. Sci. Eng. A 332, 343 (2002).

    Article  Google Scholar 

  63. O. M. Ivasishin, S. L. Semiatin, P. E. Markovsky, S. V. Shevchenko, and S. V. Ulshin,Mater. Sci. Eng. A 337, 88 (2002).

    Article  Google Scholar 

  64. O. M. Ivasishin, S. V. Shevchenko, P. E. Markovsky, and S. L. Semiatin,Ti-2003: Science Technology (eds., G. Luetjering and J. Albrecht), p. 1307, Wiley-VCH Verlag GmbH (2004).

  65. O. M. Ivasishin, S. V. Shevchenko, N. L. Vasiliev, and S. L. Semiatin,Acta mater. 51, 1019 (2003).

    Article  CAS  Google Scholar 

  66. K. Iwata, K. Osakada, and Y. Terasaka,J. Eng. Mat. Tech., Trans. ASME 106, 132 (1984).

    Article  Google Scholar 

  67. Z. C. Lin and S. Y. Lin,J. Eng. Mat. Tech., Trans. ASME 114, 218 (1992).

    Article  CAS  Google Scholar 

  68. J. Hashemi, A. A. Tseng, and P. C. Chou,J. Mater. Eng. Perf. 3, 712 (1994).

    Article  CAS  Google Scholar 

  69. T. Obikawa and E. Usui,J. Mfg. Sci. Eng., Trans ASME,118, 208 (1996).

    Article  Google Scholar 

  70. E. Ceretti, P. Fallböhmer, W. T. Wu, and T. Altan,J. Mater. Proc. Tech. 59, 169 (1996).

    Article  Google Scholar 

  71. P. Chigurupati, J-T. Jinn, J. Y. Oh, Y. Yin, H. Zhang and W. T. Wu,NUMIFORM 2004 (eds., S. Ghosh, J. M. Castro, and J. K. Lee), p. 1359, Columbus, Ohio (2004).

  72. S. H. Rhim and S. I. Oh,NUMIFORM 2004 (eds., S. Ghosh, J. M. Castro, and J. K. Lee), p. 143, Columbus, Ohio (2004).

  73. J. Hua,PhD Thesis, Ohio State University, Columbus, Ohio (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Semiatin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semiatin, S.L., Kobryn, P.A., Ivasishin, O.M. et al. The role of modeling in the development of advanced processes for metallic aerospace alloys. Met. Mater. Int. 10, 589–603 (2004). https://doi.org/10.1007/BF03027423

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027423

Keywords

Navigation