Skip to main content
Log in

Measurement of piperacillin plasma concentrations in cancer patients with suspected infection

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Background

Piperacillin (PIP) in combination with tazobactam is commonly used for anti-infective treatment in cancer patients. PIP exerts a time-dependent killing. Thus, the maintenance of plasma concentrations above a pre-defined target concentration for a pre-defined time may be relevant for optimal efficacy. It is assumed that PIP-plasma concentrations above the clinical breakpoint of the target pathogen [Pseudomonas aeruginosa, clinical breakpoint at minimal inhibitory concentration (MIC) 16 mg/L] should be reached for 100% of the dosing interval or >4xMIC (64 mg/L) for 50% of the dosing interval. Whereas studies in the intensive-care setting have shown underdosing in patients with sepsis, little is known about PIP-plasma concentrations in cancer patients.

Methods

Data of 56 cancer patients who received piperacillin/tazobactam (PIP/TAZ, 4.5 g three times daily) as empiric therapy for suspected infection were analysed at baseline and 4 h after the infusion.

Results

Median trough concentrations in steady state [median 3 days (IQR 3–5) after start of PIP/TAZ] were 4.6 mg/L (95% CI 0.3–136.3) and median PIP-plasma concentrations 4 h after infusion were 46.2 mg/L (95% CI 10.1–285.6). A second evaluation 5 days (IQR 4–7) after start of PIP/TAZ confirmed these results: trough concentrations were 2.7 mg/L (95% CI 0.5–6.3), concentrations after 4 h 28.0 mg/L (95% CI 1.7–47.3). A good renal function was associated with lower plasma concentrations (r = −0.388, p < 0.003). Detailed pharmacokinetic measurements in six patients showed low maximum plasma concentration (median 165 mg/L) and a rapid decline of plasma concentrations (median plasma half time 1.38 h).

Conclusion

In conclusion, piperacillin plasma concentrations in cancer patients are below target levels warranting prospective trials to investigate therapeutic drug monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lin MY, Weinstein RA, Hota B. Delay of active antimicrobial therapy and mortality among patients with bacteremia: impact of severe neutropenia. Antimicrob Agents Chemother. 2008;52(9):3188–94. doi:10.1128/AAC.01553-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. EUCAST. Breakpoint tables for interpretation of MICs and zone diameters. European Committee on Antimicrobial Susceptibility Testing, Växjö, Sweden. 2013. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Breakpoint_table_v_3.1.pdf. Accessed Nov 15 2016.

  3. De Waele JJ, Carrette S, Carlier M, Stove V, Boelens J, Claeys G, et al. Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: a randomised controlled trial. Intensiv Care Med. 2014;40(3):380–7. doi:10.1007/s00134-013-3187-2.

    Article  Google Scholar 

  4. Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol. 2004;2(4):289–300. doi:10.1038/nrmicro862.

    Article  CAS  PubMed  Google Scholar 

  5. Paul M, Dickstein Y, Schlesinger A, Grozinsky-Glasberg S, Soares-Weiser K, Leibovici L. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropenia. Cochrane Database Syst Rev. 2013;6:CD003038. doi:10.1002/14651858.CD003038.pub2.

    Google Scholar 

  6. Bow EJ, Rotstein C, Noskin GA, Laverdiere M, Schwarer AP, Segal BH, et al. A randomized, open-label, multicenter comparative study of the efficacy and safety of piperacillin-tazobactam and cefepime for the empirical treatment of febrile neutropenic episodes in patients with hematologic malignancies. Clin Infect Dis. 2006;43(4):447–59. doi:10.1086/505393.

    Article  CAS  PubMed  Google Scholar 

  7. Cometta A, Calandra T, Gaya H, Zinner SH, de Bock R, Del Favero A, et al. Monotherapy with meropenem versus combination therapy with ceftazidime plus amikacin as empiric therapy for fever in granulocytopenic patients with cancer. The International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer and the Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto Infection Program. Antimicrob Agents Chemother. 1996;40(5):1108–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. De Pauw BE, Deresinski SC, Feld R, Lane-Allman EF, Donnelly JP. Ceftazidime compared with piperacillin and tobramycin for the empiric treatment of fever in neutropenic patients with cancer. A multicenter randomized trial. The Intercontinental Antimicrobial Study Group. Ann Intern Med. 1994;120(10):834–44.

    Article  PubMed  Google Scholar 

  9. Pereira CA, Petrilli AS, Carlesse FA, Luisi FA, da Silva KV, de Martino Lee ML. Cefepime monotherapy is as effective as ceftriaxone plus amikacin in pediatric patients with cancer and high-risk febrile neutropenia in a randomized comparison. J Microbiol Immunol Infect Wei mian yu gan ran za zhi. 2009;42(2):141–7.

    CAS  PubMed  Google Scholar 

  10. Averbuch D, Orasch C, Cordonnier C, Livermore DM, Mikulska M, Viscoli C, et al. European guidelines for empirical antibacterial therapy for febrile neutropenic patients in the era of growing resistance: summary of the 2011 4th European Conference on Infections in Leukemia. Haematologica. 2009;98(12):1826–35. doi:10.3324/haematol.2013.091025.

    Article  Google Scholar 

  11. Pagano L, Caira M, Nosari A, Rossi G, Viale P, Aversa F, et al. Etiology of febrile episodes in patients with acute myeloid leukemia: results from the Hema e-Chart Registry. Arch Intern Med. 2011;171(16):1502–3. doi:10.1001/archinternmed.2011.374.

    Article  PubMed  Google Scholar 

  12. Gea-Banacloche J. Evidence-based approach to treatment of febrile neutropenia in hematologic malignancies. Hematol Am Soc Hematol Educ Program. 2013;2013:414–22. doi:10.1182/asheducation-2013.1.414.

    Google Scholar 

  13. Vehreschild MJ, Hamprecht A, Peterson L, Schubert S, Hantschel M, Peter S, et al. A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother. 2014;69(12):3387–92. doi:10.1093/jac/dku305.

    Article  CAS  PubMed  Google Scholar 

  14. Taccone FS, Laterre PF, Dugernier T, Spapen H, Delattre I, Wittebole X, et al. Insufficient beta-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care. 2010;14(4):R126. doi:10.1186/cc9091.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sime FB, Roberts MS, Tiong IS, Gardner JH, Lehman S, Peake SL, et al. Can therapeutic drug monitoring optimize exposure to piperacillin in febrile neutropenic patients with haematological malignancies? A randomized controlled trial. J Antimicrob Chemother. 2015;70(8):2369–75. doi:10.1093/jac/dkv123.

    Article  CAS  PubMed  Google Scholar 

  16. Sime FB, Roberts MS, Warner MS, Hahn U, Robertson TA, Yeend S, et al. Altered pharmacokinetics of piperacillin in febrile neutropenic patients with hematological malignancy. Antimicrob Agents Chemother. 2014;58(6):3533–7. doi:10.1128/AAC.02340-14.

    Article  PubMed  PubMed Central  Google Scholar 

  17. FDA. Prescribing Information Zosyn. https://www.fda.gov/ohrms/dockets/dockets/06p0195/06P-0195-EC1-Attach-1.pdf. Accessed 28 March 2017.

  18. Sime FB, Roberts MS, Roberts JA, Robertson TA. Simultaneous determination of seven beta-lactam antibiotics in human plasma for therapeutic drug monitoring and pharmacokinetic studies. J Chromatogr B Anal Technol Biomed Life Sci. 2014;960:134–44. doi:10.1016/j.jchromb.2014.04.029.

    Article  CAS  Google Scholar 

  19. Zhang Y, Huo M, Zhou J, Xie S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Programs Biomed. 2010;99(3):306–14. doi:10.1016/j.cmpb.2010.01.007.

    Article  PubMed  Google Scholar 

  20. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gibaldi M, Perrier D. Pharmacokinetics. New York: Dekker; 1982.

    Google Scholar 

  22. Pinheiro JC, Bates DM. Mixed-effects models in S and S-PLUS. Statistics and computing. New York: Springer; 2009.

    Google Scholar 

  23. Cawello W. Parameters for the compartment-free pharmacokinetics—standardisation of study design, data analysis and reporting. Aachen: Shaker; 1999.

    Google Scholar 

  24. Brown H, Prescott R. Applied mixed models in medicine (statistics in practice). New York: Wiley; 2015.

    Google Scholar 

  25. R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. ISBN: 3-900051-07-0. Accessed Nov 15 2016.

  26. Pinheiro JC, Bates DM, DebRoy S, Sarkar D, Team RC. Linear and Nonlinear Mixed Effects Models_. R package version 3.1-122. 2015. http://CRAN.R-project.org/package=nlme. Accessed Nov 15 2016.

  27. KDIGO. KDIGO 2012clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013;3:1–150.

    Article  Google Scholar 

  28. De Schepper PJ, Tjandramaga TB, Mullie A, Verbesselt R, van Hecken A, Verberckmoes R, et al. Comparative pharmacokinetics of piperacillin in normals and in patients with renal failure. J Antimicrob Chemother. 1982;9(Suppl B):49–57.

    Article  PubMed  Google Scholar 

  29. Thompson MI, Russo ME, Matsen JM, Atkin-Thor E. Piperacillin pharmacokinetics in subjects with chronic renal failure. Antimicrob Agents Chemother. 1981;19(3):450–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sime FB, Udy AA, Roberts JA. Augmented renal clearance in critically ill patients: etiology, definition and implications for beta-lactam dose optimization. Curr Opin Pharmacol. 2015;24:1–6. doi:10.1016/j.coph.2015.06.002.

    Article  CAS  PubMed  Google Scholar 

  31. Udy AA, Putt MT, Shanmugathasan S, Roberts JA, Lipman J. Augmented renal clearance in the Intensive Care Unit: an illustrative case series. Int J Antimicrob Agents. 2010;35(6):606–8. doi:10.1016/j.ijantimicag.2010.02.013.

    Article  CAS  PubMed  Google Scholar 

  32. Roy AC, Jones DN, Slavotinek JP, Kichenadasse G, Karapetis C, Lam E, et al. Very high GFR in cancer patients undergoing chemotherapy: prevalence, carboplatin dosing patterns and chemotherapy toxicity. Asia Pac J Clin Oncol. 2011;7(3):281–6. doi:10.1111/j.1743-7563.2011.01409.x.

    Article  PubMed  Google Scholar 

  33. Klepser ME, Marangos MN, Zhu Z, Nicolau DP, Quintiliani R, Nightingale CH. Comparison of the bactericidal activities of piperacillin-tazobactam, ticarcillin-clavulanate, and ampicillin-sulbactam against clinical isolates of Bacteroides fragilis, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1997;41(2):435–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Buck C, Bertram N, Ackermann T, Sauerbruch T, Derendorf H, Paar WD. Pharmacokinetics of piperacillin-tazobactam: intermittent dosing versus continuous infusion. Int J Antimicrob Agents. 2005;25(1):62–7. doi:10.1016/j.ijantimicag.2004.08.012.

    Article  CAS  PubMed  Google Scholar 

  35. Rafati MR, Rouini MR, Mojtahedzadeh M, Najafi A, Tavakoli H, Gholami K, et al. Clinical efficacy of continuous infusion of piperacillin compared with intermittent dosing in septic critically ill patients. Int J Antimicrob Agents. 2006;28(2):122–7. doi:10.1016/j.ijantimicag.2006.02.020.

    Article  CAS  PubMed  Google Scholar 

  36. Roberts JA, Kirkpatrick CM, Roberts MS, Dalley AJ, Lipman J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents. 2010;35(2):156–63. doi:10.1016/j.ijantimicag.2009.10.008.

    Article  CAS  PubMed  Google Scholar 

  37. Bodey GP, Ketchel SJ, Rodriguez V. A randomized study of carbenicillin plus cefamandole or tobramycin in the treatment of febrile episodes in cancer patients. Am J Med. 1979;67(4):608–16.

    Article  CAS  PubMed  Google Scholar 

  38. Abbott IJ, Roberts JA. Infusional beta-lactam antibiotics in febrile neutropenia: has the time come? Curr Opin Infect Dis. 2012;25(6):619–25. doi:10.1097/QCO.0b013e32835915c2.

    Article  CAS  PubMed  Google Scholar 

  39. Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2011;52(4):427–31. doi:10.1093/cid/ciq147.

    Article  PubMed  Google Scholar 

  40. Tamma PD, Turnbull AE, Milstone AM, Hsu AJ, Carroll KC, Cosgrove SE. Does the piperacillin minimum inhibitory concentration for Pseudomonas aeruginosa influence clinical outcomes of children with pseudomonal bacteremia? Clin Infect Dis Off Publ Infect Dis Soc Am. 2012;55(6):799–806. doi:10.1093/cid/cis545.

    Article  CAS  Google Scholar 

  41. Harada Y, Morinaga Y, Kaku N, Nakamura S, Uno N, Hasegawa H, et al. In vitro and in vivo activities of piperacillin-tazobactam and meropenem at different inoculum sizes of ESBL-producing Klebsiella pneumoniae. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2014;20(11):O831–9. doi:10.1111/1469-0691.12677.

    CAS  Google Scholar 

  42. Rolston KV. Neutropenic fever and sepsis: evaluation and management. Cancer Treat Res. 2014;161:181–202. doi:10.1007/978-3-319-04220-6_6.

    Article  PubMed  Google Scholar 

  43. El-Sharif A, Elkhatib WF, Ashour HM. Nosocomial infections in leukemic and solid-tumor cancer patients: distribution, outcome and microbial spectrum of anaerobes. Futur Microbiol. 2012;7(12):1423–9. doi:10.2217/fmb.12.125.

    Article  CAS  Google Scholar 

Download references

Funding

The study has received no funding. Data from patients were generated as part of the routine work in the University Hospital Jena, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Rachow.

Ethics declarations

Conflict of interest

TR received lecture fees from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachow, T., Schlüter, V., Bremer-Streck, S. et al. Measurement of piperacillin plasma concentrations in cancer patients with suspected infection. Infection 45, 629–636 (2017). https://doi.org/10.1007/s15010-017-1026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-017-1026-z

Keywords

Navigation