Skip to main content
Log in

Self-similarity of high p T hadron production in cumulative processes and violation of discrete symmetries at small scales (suggestion for experiment)

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

The hypothesis of the self-similarity of hadron production in relativistic heavy-ion collisions to search for the phase transition in nuclear matter is discussed. Using the established features of z-scaling is suggested to reveal the signatures of new physics in the cumulative region. It is noted that selecting events on centrality in the cumulative region could help localize the position of a critical point. The change in the parameters of the theory (a specific heat and fractal dimensions) near the critical point is considered a signature of new physics. The relationship between the power asymptotic of Ψ(z) at high values of the similarity parameter z, the anisotropy of momentum space due to spontaneous symmetry breaking, and discrete (C, P, T) symmetries is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hankey and H. E. Stanley, Phys. Rev. B 6, 3515–3542 (1972).

    Article  ADS  Google Scholar 

  2. H. E. Stanley, Rev. Mod. Phys. 71, S358–S366 (1999).

    Article  Google Scholar 

  3. M. V. Tokarev et al., Intern. J. Mod. Phys. A 16, 1281–1301 (2001).

    Article  ADS  Google Scholar 

  4. I. Zborovský and M. V. Tokarev, Phys. Rev. D 75, 094008-1–094008-22 (2007).

    Article  ADS  Google Scholar 

  5. I. Zborovský and M. V. Tokarev, Intern. J. Mod. Phys. A 24, 1417–1442 (2009).

    Article  Google Scholar 

  6. I. Zborovský and M. V. Tokarev, Phys. At. Nucl. 72, 552–560 (2009).

    Article  Google Scholar 

  7. M. V. Tokarev, Phys. At. Nucl. 72, 541–551 (2009).

    Article  Google Scholar 

  8. B. I. Abelev et al. (STAR Collab.), “Energy Dependence of π±, p and Anti-p Transverse Momentum Spectra for Au + Au Collisions at s 1/2NN = 62. 4 and 200 GeV,” Phys. Lett. B 655, 104–113 (2007); nucl-ex/0703040; B. I. Abelev et al. (STAR Collab.), “Identified Baryon and Meson Distributions at Large Transverse Momenta from Au + Au Collisions at s 1/2NN = 200 GeV,” Phys. Rev. Lett. 97, 152301-1–6 (2006).

    Article  ADS  Google Scholar 

  9. M. V. Tokarev and I. Zborovský, JINR Preprint E2-2009-40 (Dubna, 2009), p. 23.

  10. B. B. Back et al. (PHOBOS Collab.), “Identified Hadron Transverse Momentum Spectra in Au + Au Collisions at \( \sqrt {s_{NN} } \) = 62.4 GeV,” Phys. Rev. C 75, 024910-1–13 (2007).

    Article  ADS  Google Scholar 

  11. L. Kumar (for STAR Collab.), “Bulk Properties in Au + Au Collisions at s 1/2NN = 9.2 GeV in STAR Experiment at RHIC,” in Proc. of the 21st Intern. Conf. on Ultra-Relativistic Nucleus-Nucleus Collisions Quark Matter 2009, Knoxville, TN, USA, 29 March — 4 Apr. 2009, http://www.phy.ornl.gov/QM09/qm09.shtml

  12. L. Kumar (for STAR Collab.), “First Results from Au + Au Collisions at = 9.2 GeV in STAR,” in Proc. of the Intern. Conf. on Strangeness in Quark Matter, SQM, 2008, Bejing, Oct. 6–10, 2008; http://qm.phys.tsing-hua.edu.cn/thu-henp/2008/sqm2008/index.php

  13. C. Alt et al. (NA49 Collab.), “High Transverse Momentum Hadron Spectra at \( \sqrt {s_{NN} } \) = 17.3 GeV in Pb + Pb and p + p Collisions,” Phys. Rev. C 77, 034906-1–11 (2008).

    ADS  Google Scholar 

  14. D. I. Blokhintsev, “On Fluctuations of Nuclear Substance Dencity,” Zh. Eksp. Teor. Fiz. 33, 1295–1299 (1957) [Sov. Phys. JETP 6, 995 (1957)].

    Google Scholar 

  15. V. V. Burov, V. K. Lukyanov, and A. I. Titov, Phys. Lett. B 67, 46–48 (1977).

    Article  ADS  Google Scholar 

  16. V. K. Luk’yanov and A. I. Titov, “Nuclear Reactions with Large Impulse Transmission and Hypothesis of Fluctons in Nuclei,” Fiz. Elem. Chastits At. Yadra 10, 815–849 (1979) [Sov. J. Part. Nucl. 10, 321 (1979)].

    Google Scholar 

  17. A. M. Baldin, Short Commun. Phys. FIAN, No. 1, 35–39 (1971); A. M. Baldin, Fiz. Elem. Chastits At. Yadra 8, 429–477 (1977) [Sov. J. Part. Nucl. 8, 175 (1977)].

  18. V. S. Stavinskii, “Limit Nuclei Fragmentation — Cumulative Effect (Experiment),” Fiz. Elem. Chastits At. Yadra 10, 949–995 (1979) [Sov. J. Part. Nucl. 10, 373 (1979)].

    Google Scholar 

  19. L. S. Schroeder et al., Phys. Rev. Lett. 43, 1787–1791 (1979).

    Article  ADS  Google Scholar 

  20. G. A. Leksin, “Nuclear Scaling. Elementary Particles,” in Proc. of the 3rd Physics School ITEF (Moscow, 1975), No. 2, p. 5; G. A. Leksin, Nuclear Scaling (Moscow, 1975), p. 90.

  21. Y. D. Bayukov et al., Phys. Rev. C 20, 764–772 (1979).

    Article  ADS  Google Scholar 

  22. N. A. Nikiforov et al., Phys. Rev. C 22, 700–710 (1980).

    Article  ADS  Google Scholar 

  23. S. V. Boyarinov et al., “Production of Cumulative Protons at Momenta 0.6 GeV/c to 1.83 GeV/c,” Sov. J. Nucl. Phys. 46, 871–880 (1987).

    Google Scholar 

  24. O. P. Gavrishchuk et al., Nucl. Phys. A 523, 589–596 (1991).

    Article  ADS  Google Scholar 

  25. V. K. Bondarev, “Cumulative Birth if Particles on Beams of Protons and Nuclei,” Fiz. Elem. Chastits At. Yadra 28, 13–88 (1997) [Phys. Part. Nucl. 28, 5 (1997)].

    MathSciNet  Google Scholar 

  26. V. B. Gavrilov et al., “Study of Deep Inelastic Nuclear Reactions,” Nucl. Phys. A 532, 321–338 (1991).

    Article  ADS  Google Scholar 

  27. M. I. Strikman and L. L. Frankfurt, Fiz. Elem. Chastits At. Yadra 11, 571–629 (1980) [Sov. J. Part. Nucl. 11, 221 (1980)]; L. L. Frankfurt and M. I. Strikman, “Hard Nuclear Processes and Microscopic Nuclear Structure,” Phys. Rep. 160, 235–427 (1988); L. L. Frankfurt and M. I. Strikman, “High-Energy Phenomena, Short-Range Nuclear Structure and QCD,” Phys. Rep. 76, 215–347 (1981).

    Google Scholar 

  28. A. V. Efremov, “Quark-Parton Picture of Cumulative Production,” Fiz. Elem. Chastits At. Yadra 13, 613–677 (1982) [Sov. J. Part. Nucl. 13, 254 (1982)].

    Google Scholar 

  29. V. V. Burov, V. K. Luk’yanov, and A. I. Titov, “Multiquark Systems in Nuclear Processes,” Fiz. Elem. Chastits At. Yadra 15, 1249–1295 (1984) [Sov. J. Part. Nucl. 15, 558 (1984)].

    Google Scholar 

  30. M. Braun and V. Vechernin, Nucl. Phys. B 427, 614 (1994); Phys. At. Nucl. 60, 432 (1997); Phys. At. Nucl. 63, 1831 (2000); M. A. Braun and V. V. Vechernin, “Quark Coalescence Mechanism near the Threshold,” Teor. Mat. Fiz. 139, 381–404 (2004) [Theor. Math. Phys. 139, 766 (2004)].

    Article  ADS  Google Scholar 

  31. G. A. Leksin, Phys. At. Nucl. 65, 1985–1994 (2002).

    Article  Google Scholar 

  32. I. G. Alekseev et al., “Measurement of Cumulative Photon Spectra at High Transverse Momenta in 12C-9Be Interactions at an Energy of 3.2 GeV per Nucleon,” Yad. Fiz. 71(11) (2008) [Phys. At. Nucl. 71, 1848 (2008)].

  33. I. Zborovský, “z-Scaling and Space-Time Structural Relativity,” hep-ph/0311306.

  34. M. V. Tokarev and I. Zborovský, “z-Scaling as Manifestation of Symmetry in Nature,” in Proc. of Seminar on Symmetries and Integrable Systems, Ed. by A. N. Sissakian (Dubna, 2006), vol. 2, pp. 154–168.

  35. M. V. Tokarev and T. G. Dedovich, “Verification of z-Scaling at RHIC and Tevatron,” Phys. At. Nucl. 68, 404–413 (2005).

    Article  Google Scholar 

  36. M. Tokarev and G. Efimov, “z-Scaling, High-p T Direct Photon and π0 Meson Production at RHIC and LHC,” hep-ph/0209013.

  37. D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A 803, 227–253 (2008).

    Article  ADS  Google Scholar 

  38. K. Fukushima et al., “The Chiral Magnetic Effect,” Phys. Rev. D 78, 074033-1–14 (2008).

    ADS  Google Scholar 

  39. A. N. Kolmogorov, “Local Structure of Turbulence in an Incompressible Liquid for Very Large Reynolds Numbers,” Dokl. Akad. Nauk SSSR 30, 299–303 (1941).

    ADS  Google Scholar 

  40. A. M. Obukhov, “On Energy Distribution in Turbulent Flux Spectra,” Dokl. Akad. Nauk SSSR 32, 22–24 (1941).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tokarev.

Additional information

Original Russian Text © M.V. Tokarev, I. Zborovsky-, 2010, published in Pis’ma v Zhurnal Fizika Elementarnykh Chastits i Atomnogo Yadra, 2010, No. 3 (159), pp. 271–286.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokarev, M.V., Zborovský, I. Self-similarity of high p T hadron production in cumulative processes and violation of discrete symmetries at small scales (suggestion for experiment). Phys. Part. Nuclei Lett. 7, 160–170 (2010). https://doi.org/10.1134/S1547477110030027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477110030027

Keywords

Navigation