Skip to main content
Log in

Fluorescence Imaging-Guided Identification of Thymic Masses Using Low-Dose Indocyanine Green

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

A Correction to this article was published on 18 March 2022

This article has been updated

Abstract

Background

Indocyanine green (ICG) fluorescence imaging has been used to detect many types of tumors during surgery; however, there are few studies on thymic masses and the dose and time of ICG injection have not been optimized.

Objective

We aimed to evaluate the optimal ICG injection dose and timing for detecting thymic masses during surgery.

Method

Forty-nine consecutive patients diagnosed with thymic masses on preoperative computed tomography (CT) and scheduled to undergo thymic cystectomy or thymectomy were included. Patients were administered 1, 2, or 5 mg/kg of ICG at different times. Thymic masses were observed during and after surgery using a near-infrared fluorescence imaging system, and the fluorescence signal tumor-to-normal ratio (TNR) was analyzed.

Results

Among the 49 patients, 14 patients with thymic cysts showed negative fluorescence signals, 33 patients with thymoma or thymic carcinoma showed positive fluorescence signals, and 2 patients showed insufficient fluorescence signals. The diagnosis of thymic masses based on CT was correct in 32 (65%) of 49 cases; however, the differential diagnosis of thymic masses based on NIR signals was correct in 47 of 49 cases (96%), including 14 cases of thymic cysts (100%) and 33 cases of thymomas or thymic carcinomas (94%). In addition, TNR was not affected by the time or dose of ICG injection, histological type, stage, or tumor size.

Conclusions

Low-dose intravenous injection of ICG at flexible time can detect thymic tumors. In addition, thymic cysts can be distinguished from thymomas or thymic carcinomas during surgery by the absence of ICG fluorescence signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Tomiyama N, Honda O, Tsubamoto M, et al. Anterior mediastinal tumors: diagnostic accuracy of CT and MRI. Eur J Radiol. 2009;69(2):280–8.

    Article  PubMed  Google Scholar 

  2. Kurup A, Loehrer PJ Sr. Thymoma and thymic carcinoma: therapeutic approaches. Clinical Lung Cancer. 2004;6(1):28–32.

    Article  PubMed  Google Scholar 

  3. Venuta F, Anile M, Diso D, et al. Thymoma and thymic carcinoma. Eur J Cardio-thoracic Surg. 2010;37(1):13–25.

    Article  Google Scholar 

  4. Eng TY, Fuller CD, Jagirdar J, Bains Y, Thomas CR. Thymic carcinoma: state of the art review. Int J Radiation Oncology Biology Physics. 2004;59(3):654–64.

    Article  Google Scholar 

  5. Weiss GJ. Thymic carcinoma: current and future therapeutic interventions. Exp Opinion on Investigat Drugs. 2010;19(8):1007–16.

    Article  CAS  Google Scholar 

  6. Ettinger DS, Riely GJ, Akerley W, et al. Thymomas and thymic carcinomas: clinical practice guidelines in oncology. J Natl Comprehensive Cancer Netw. 2013;11(5):562–76.

    Article  CAS  Google Scholar 

  7. Kent MS, Wang T, Gangadharan SP, Whyte RI. What is the prevalence of a “nontherapeutic” thymectomy? Ann Thorac Surg. 2014;97(1):276–82.

    Article  PubMed  Google Scholar 

  8. Kondo K. Optimal therapy for thymoma. The J Med Investig. 2008;55(1–2):17–28.

    Article  Google Scholar 

  9. Kondo K, Monden Y. Therapy for thymic epithelial tumors: a clinical study of 1,320 patients from Japan. Ann Thorac Surg. 2003;76(3):878–84.

    Article  PubMed  Google Scholar 

  10. Masaoka A. Staging system of thymoma. J Thoracic Oncol. 2010;5(10 Suppl 4):S304-312.

    Article  Google Scholar 

  11. Venuta F, Rendina EA, Anile M, de Giacomo T, Vitolo D, Coloni GF. Thymoma and thymic carcinoma. General Thoracic and Cardiovascular Surg. 2012;60(1):1–12.

    Article  Google Scholar 

  12. Girard N, Ruffini E, Marx A, Faivre-Finn C, Peters S, Committee EG. Thymicepithelial tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v40-55.

    Article  PubMed  Google Scholar 

  13. Suster S, Rosai J. Multilocular thymic cyst an acquired reactive process Study of 18 cases. Am J Surg Pathol. 1991;15(4):388–98.

    Article  CAS  PubMed  Google Scholar 

  14. Vargas D, Suby-Long T, Restrepo CS. Cystic Lesions of the Mediastinum. Seminars in ultrasound, CT, and MR. 2016;37(3):212–22.

    Article  PubMed  Google Scholar 

  15. Wang X, Chen K, Li X, et al. Clinical features, diagnosis and thoracoscopic surgical treatment of thymic cysts. J Thoracic Dis. 2017;9(12):5203–11.

    Article  Google Scholar 

  16. Keating J, Judy R, Newton A, Singhal S. Near-infrared operating lamp for intraoperative molecular imaging of a mediastinal tumor. BMC Med Imaging. 2016;16(1):15.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Predina JD, Keating J, Newton A, et al. A clinical trial of intraoperative near-infrared imaging to assess tumor extent and identify residual disease during anterior mediastinal tumor resection. Cancer. 2019;125(5):807–17.

    Article  CAS  PubMed  Google Scholar 

  18. Vaja R, Joshi V, Dawson AG, Waller DA. Is a diagnostic video-assisted thoracoscopic thymectomy an acceptable first-line approach to the suspicious anterior mediastinal mass? J Minimal Access Surg. 2017;13(4):286–90.

    Article  Google Scholar 

  19. Vahrmeijer AL, Hutteman M, Van Der Vorst JR, Van De Velde CJ, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nature Rev Clin Oncol. 2013;10(9):507–18.

    Article  CAS  Google Scholar 

  20. Ishizawa T, Fukushima N, Shibahara J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115(11):2491–504.

    Article  PubMed  Google Scholar 

  21. Manny TB, Krane LS, Hemal AK. Indocyanine green cannot predict malignancy in partial nephrectomy: histopathologic correlation with fluorescence pattern in 100 patients. J Endourol. 2013;27(7):918–21.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Altinoglu EI, Russin TJ, Kaiser JM, et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano. 2008;2(10):2075–84.

    Article  CAS  PubMed  Google Scholar 

  23. Keating J, Tchou J, Okusanya O, et al. Identification of breast cancer margins using intraoperative near-infrared imaging. J Surg Oncol. 2016;113(5):508–14.

    Article  CAS  PubMed  Google Scholar 

  24. Keating JJ, Nims S, Venegas O, et al. Intraoperative imaging identifies thymoma margins following neoadjuvant chemotherapy. Oncotarget. 2016;7(3):3059.

    Article  PubMed  Google Scholar 

  25. Kennedy GT, Newton A, Predina J, Singhal S. Intraoperative near-infrared imaging of mesothelioma. Translational Lung Cancer Res. 2017;6(3):279–84.

    Article  CAS  Google Scholar 

  26. Jiang JX, Keating JJ, Jesus EM, et al. Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. Am J Nuclear Med Molecular Imaging. 2015;5(4):390–400.

    Google Scholar 

  27. Safieddine N, Keshavjee S. Anatomy of the thymus gland. Thoracic Surg Clinics. 2011;21(2):191–5.

    Article  Google Scholar 

  28. Han KN, Kim HK, Choi YH. Transthoracic single-port video-assisted thoracoscopic thymectomy. J Vis Surg. 2018;4:164–164.

    Article  Google Scholar 

  29. Oh Y, Quan YH, Choi Y, et al. Intraoperative combined color and fluorescent images-based sentinel node mapping in the porcine lung: comparison of indocyanine green with or without albumin premixing. J Thorac Cardiovasc Surg. 2013;146(6):1509–15.

    Article  PubMed  Google Scholar 

  30. Oh Y, Lee YS, Quan YH, et al. Thoracoscopic color and fluorescence imaging system for sentinel lymph node mapping in porcine lung using indocyanine green-neomannosyl human serum albumin: intraoperative image-guided sentinel nodes navigation. Ann Surg Oncol. 2014;21(4):1182–8.

    Article  PubMed  Google Scholar 

  31. Oh Y, Quan YH, Kim M, Kim BM, Kim HK. Intraoperative fluorescence image-guided pulmonary segmentectomy. J Surg Res. 2015;199(2):287–93.

    Article  PubMed  Google Scholar 

  32. Kim HK, Quan YH, Oh Y, et al. Macrophage-targeted indocyanine green-neomannosyl human serum albumin for intraoperative sentinel lymph node mapping in porcine esophagus. Ann Thoracic Surg. 2016;102(4):1149–55.

    Article  Google Scholar 

  33. Quan YH, Oh CH, Jung D, et al. Evaluation of intraoperative near-infrared fluorescence visualization of the lung tumor margin with indocyanine green inhalation. JAMA Surg. 2020;155(8):732–40.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jeong YJ, Lee KS, Kim J, Shim YM, Han J, Kwon O. Does CT of thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis? AJR Am J Roentgenol. 2004;183(2):283–9.

    Article  PubMed  Google Scholar 

  35. Suster S. Diagnosis of thymoma. J Clin Pathol. 2006;59(12):1238–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Zhou J, Chi C, et al. Clinical application of near-infrared thoracoscope with indocyanine green in video-assisted thoracoscopic bullectomy. J Thoracic Dis. 2016;8(7):1841–5.

    Article  Google Scholar 

  37. Jurado J, Javidfar J, Newmark A, et al. Minimally invasive thymectomy and open thymectomy: outcome analysis of 263 patients. Ann Thorac Surg. 2012;94(3):974–81.

    Article  PubMed  Google Scholar 

  38. Kondo K, Monden Y. Lymphogenous and hematogenous metastasis of thymic epithelial tumors. Ann Thorac Surg. 2003;76(6):1859–64.

    Article  PubMed  Google Scholar 

  39. Kim HK, Quan YH, Choi BH, et al. Intraoperative pulmonary neoplasm identification using near-infrared fluorescence imaging. Eur J Cardio-Thoracic Surg. 2015;49(5):1497–502.

    Article  Google Scholar 

  40. Choi HS, Kim HK. Multispectral image-guided surgery in patients. Nature Biomed Eng. 2020;4(3):245–6.

    Article  Google Scholar 

  41. Predina JD, Keating J, Newton A, et al. A clinical trial of intraoperative near-infrared imaging to assess tumor extent and identify residual disease during anterior mediastinal tumor resection. Cancer. 2019;125(5):807–17.

    Article  CAS  PubMed  Google Scholar 

  42. Predina JD, Newton A, Kennedy G, Lee MK, Singhal S. Near-Infrared Intraoperative Imaging Can Successfully Identify Malignant Pleural Mesothelioma After Neoadjuvant Chemotherapy. Mol Imaging Jan-Dec. 2017;16:1536012117723785.

    Google Scholar 

  43. Keating JJ, Kennedy GT, Singhal S. Identification of a subcentimeter pulmonary adenocarcinoma using intraoperative near-infrared imaging during video-assisted thoracoscopic surgery. J Thorac Cardiovasc Surg. 2015;149(3):e51-53.

    Article  PubMed  Google Scholar 

  44. James NS, Chen Y, Joshi P, et al. Evaluation of polymethine dyes as potential probes for near infrared fluorescence imaging of tumors: part - 1. Theranostics. 2013;3(9):692–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mahalingam SM, Kularatne SA, Myers CH, et al. Evaluation of novel tumor-targeted near-infrared probe for fluorescence-guided surgery of cancer. J Med Chem. 2018;61(21):9637–46.

    Article  CAS  PubMed  Google Scholar 

  46. de Valk KS, Deken MM, Handgraaf HJM, et al. First-in-Human Assessment ofcRGD-ZW800-1, a Zwitterionic, Integrin-Targeted, Near-Infrared Fluorescent Peptide in Colon Carcinoma. Clin Cancer Res. 2020;26(15):3990–8.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (No: HI19C0166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Koo Kim MD, PhD.

Ethics declarations

Disclosure

YHQ, RX, BHC, JR, JHL, KNH, YHC, B-MK, and HKK declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Funding information was added.

Supplementary Information

Below is the link to the electronic supplementary material.

Intraoperative differentiation of thymic cyst from thymoma based on the NIR fluorescence signal. (MP4 24546 kb)

10434_2022_11466_MOESM2_ESM.jpg

Comparison of TNR in simple cysts, multilocular cysts, and sticky fluid density cysts. Error bars represent the SD value of TNR (**P < 0.001). TNR, tumor-to-normal ratio; CT, computed tomography; SD, standard deviation. (JPG 147 kb)

Supplementary file3 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Y.H., Xu, R., Choi, B.H. et al. Fluorescence Imaging-Guided Identification of Thymic Masses Using Low-Dose Indocyanine Green. Ann Surg Oncol 29, 4476–4485 (2022). https://doi.org/10.1245/s10434-022-11466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-022-11466-8

Navigation