Skip to main content
Log in

Reaction of CaAl4O7 with (0001)-oriented α-Al2O3

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reactions between thin films of CA2 and (0001)-oriented α-Al2O3 have been studied using a combination of microscopy techniques. Thin films of amorphous CA2 were deposited on sapphire substrates by pulsed-laser deposition at 900 °C in an oxygen ambient atmosphere. After deposition, the reaction couples were heat treated in air for various times either at 1300 or 1400 °C. Atomic-force microscopy was used to monitor changes in the microstructure of the films. Interfaces between the different regions were examined by transmission electron microscopy (TEM) of cross-sectional samples prepared by focused ion-beam milling. The CA2 films had dewetted the substrate surface as a result of the heat treatment. An interfacial reaction layer was observed between the dewetted CA2 droplets and the substrate. The structure of this reaction layer was found to be consistent with γ-Al2O3 by computer analysis of high-resolution TEM images. There is a perfect epitaxy between the interfacial layer and the substrate. For the samples heat treated for longer times, hexagonal features were found on the substrate surface. The presence of these features on (0001)-oriented α-Al2O3 suggests that CA6 platelets form by the transformation of the interfacial reaction layer. The results are discussed in relation to the crystallization behavior of the various calcium aluminate phases and the equilibrium-phase diagram of the CaO–Al2O3 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hansen SC, Philips DS (1983) Philos Mag 47:209

    Article  CAS  Google Scholar 

  2. Bae IJ, Baik S (1996) Mater Sci Forum 204–206:485

    Article  Google Scholar 

  3. Bae IJ, Baik S (1997) J Am Ceram Soc 80:1149

    Article  CAS  Google Scholar 

  4. Cook RF, Schrott AG (1988) J Am Ceram Soc 71:50

    Article  CAS  Google Scholar 

  5. Handwerker CA, Morris PA, Coble RL (1989) J Am Ceram Soc 72:130

    Article  CAS  Google Scholar 

  6. Brydson R, Chen SC, Riley FL, Milne SJ (1998) J Am Ceram Soc 81:369

    Article  CAS  Google Scholar 

  7. Park SY (1996) J Mater Sci Lett 15:878

    Article  CAS  Google Scholar 

  8. Ravishankar N, Carter CB (2001) Acta Mater 49:1963

    Article  CAS  Google Scholar 

  9. Bae SI, Baik S (1993) J Am Ceram Soc 76:1065

    Article  CAS  Google Scholar 

  10. Altay A, Gülgün MA (2003) J Am Ceram Soc 86:623

    Article  CAS  Google Scholar 

  11. Altay A, Gülgün MA (2004) Key Eng Mater 264–268:219

    Article  Google Scholar 

  12. Belmonte M, Sanchezherencia AJ, Moreno R, Miranzo P, Moya JS, Tomsia AP (1993) J Phys IV 3:1443

    CAS  Google Scholar 

  13. Nagaoka T, Yasuoka M, Hirao K, Kanzaki S, Yamaoka Y (1996) J Mater Sci Lett 15:1815

    Article  CAS  Google Scholar 

  14. Powell-Dogan CA, Heuer AH (1990) J Am Ceram Soc 73:3670

    Article  CAS  Google Scholar 

  15. Kaplan WD, Mullejans H, Ruhle M (1995) J Am Ceram Soc 78:2841

    Article  CAS  Google Scholar 

  16. Mallamaci MP, Sartain KB, Carter CB (1998) Philos Mag A 77:561

    Article  CAS  Google Scholar 

  17. Nurse RW, Welch JH, Majumdar AJ (1965) Br Ceram Trans 64:409

    CAS  Google Scholar 

  18. Kohatsu I, Brindley GW (1968) Z Phys Chem Neue Folge 60:79

    Article  CAS  Google Scholar 

  19. Ito S, Kato M, Suzuki K, Inagaki M (1977) Z Phys Chem Neue Folge 104:147

    Article  CAS  Google Scholar 

  20. De Jonghe LC, Schmid H, Chang M (1984) J Am Ceram Soc 67:27

    Article  Google Scholar 

  21. Norton MG, Summerfelt SR, Carter CB (1990) Appl Phys Lett 56:2246

    Article  CAS  Google Scholar 

  22. Susnitzky DW, Carter CB (1992) J Am Ceram Soc 75:2463

    Article  CAS  Google Scholar 

  23. Altay A (2006) Calcium aluminate in alumina. PhD thesis, University of Minnesota

  24. Perrey CR, Carter CB, Michael JR, Kotula PG, Stach EA, Radmilovic VR (2004) J Microsc 214:222

    Article  CAS  Google Scholar 

  25. Zhang S, Garofalini SH (2005) J Am Ceram Soc 88:202

    Article  CAS  Google Scholar 

  26. Su X, Garofalini SH (2005) J Appl Chem 97:113526

    Google Scholar 

  27. Vallino M (1984) Ceram Int 10:30

    Article  CAS  Google Scholar 

  28. Douy A, Gervais M (2000) J Am Ceram Soc 83:70

    Article  CAS  Google Scholar 

  29. Cinibulk MK (1998) J Am Ceram Soc 81:3157

    Article  CAS  Google Scholar 

  30. MacKenzie KJD, Schmucker M, Smith ME, Poplett IJF, Kemmitt T (2000) Thermochim Acta 363:181

    Article  CAS  Google Scholar 

  31. Tas AC (1998) J Am Ceram Soc 81:2853

    Article  CAS  Google Scholar 

  32. Prinz GA (1985) Phys Rev Lett 54:1051

    Article  CAS  Google Scholar 

  33. Herr U (2000) Contemp Phys 41:93

    Article  CAS  Google Scholar 

  34. Utsunomiya A, Tanaka K, Morikawa H, Marumo F, Kojima H (1988) J Solid State Chem 75:197

    Article  CAS  Google Scholar 

  35. Morrissey KJ, Carter CB (1983) In: Rossington DR, Condrate RA, Snyder RL (eds) Advances in materials characterization, vol 15. Plenum Press, Alfred, NY, p 297

    Chapter  Google Scholar 

  36. Susnitzky DW, Carter CB (1986) J Am Ceram Soc 69:C25

    Google Scholar 

  37. Mallamaci MP, Carter CB (1999) J Am Ceram Soc 82:33

    Article  CAS  Google Scholar 

  38. Miller KT, Lange FF, Marshall DB (1990) J Mater Res 5:151

    Article  CAS  Google Scholar 

  39. Gimpl ML, McMaster AD, Fuschillo N (1964) J Appl Phys 35:3572

    Article  CAS  Google Scholar 

  40. Kane WM, Spratt JP, Hershinger LW (1966) J Appl Phys 37:2085

    Article  CAS  Google Scholar 

  41. Hummel RE, DeHoff RT, Matts-Goho S, Goho WM (1981) Thin Solid Films 78:1

    Article  CAS  Google Scholar 

  42. Lee SY, Hummel RE, Dehoff RT (1987) Thin Solid Films 149:29

    Article  CAS  Google Scholar 

  43. Sharma SK, Spitz J (1980) Thin Solid Films 66:51

    Article  Google Scholar 

  44. Sharma SK, Spitz J (1980) Thin Solid Films 67:109

    Article  CAS  Google Scholar 

  45. Caswell HL, Budo Y (1964) J Appl Phys 35:644

    Article  CAS  Google Scholar 

  46. Scharnhorst P (1969) Surf Sci 15:380

    Article  Google Scholar 

  47. Bachmann L, Sawyer DL, Siegel BM (1965) J Appl Phys 36:304

    Article  CAS  Google Scholar 

  48. Wu NL, Phillips J (1986) J Appl Phys 59:769

    Article  CAS  Google Scholar 

  49. Eustathopoulos N (1998) Acta Mater 46:2319

    CAS  Google Scholar 

  50. Rado C, Drevet B, Eustathopoulos N (2000) Acta Mater 48:4483

    Article  CAS  Google Scholar 

  51. Saiz E, Cannon RM, Tomsia AP (2000) Acta Mater 48:4449

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was initially supported by U.S. Department of Energy through grant DE-FG02-01ER45883 and subsequently by the 3M Harry Heltzer Endowed Chair, an NSF international travel grant INT-0322622 and a Turkish Science and Technology Foundation TUBITAK Bilateral Travel grant 103M038. The authors thank Dr. U. Dahmen for access to the FIB at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory; NCEM is supported by the U.S. Department of Energy under Contract # DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Carter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altay, A., Carter, C.B. & Gülgün, M.A. Reaction of CaAl4O7 with (0001)-oriented α-Al2O3 . J Mater Sci 44, 84–92 (2009). https://doi.org/10.1007/s10853-008-3067-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3067-2

Keywords

Navigation