Skip to main content
Log in

Immune atomic force microscopy of prestin-transfected CHO cells using quantum dots

  • Sensory Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Prestin, a membrane protein of the outer hair cells (OHCs), is known to be the motor which drives OHC somatic electromotility. Electron microscopic studies showed the lateral membrane of the OHCs to be densely covered with 10-nm particles, they being believed to be a motor protein. Imaging by atomic force microscopy (AFM) of prestin-transfected Chinese hamster ovary (CHO) cells revealed 8- to 12-nm particle-like structures to possibly be prestin. However, since there are many kinds of intrinsic membrane proteins other than prestin in the plasma membranes of OHCs and CHO cells, it was impossible to clarify which structures observed in such membranes were prestin. In the present study, an experimental approach combining AFM with quantum dots (Qdots), used as topographic surface markers, was carried out to detect individual prestin molecules. The inside-out plasma membranes were isolated from the prestin-transfected and untransfected CHO cells. Such membranes were then incubated with antiprestin primary antibodies and Qdot-conjugated secondary antibodies. Fluorescence labeling of the prestin-transfected CHO cells but not of the untransfected CHO cells was confirmed. The membranes were subsequently scanned by AFM, and Qdots were clearly seen in the prestin-transfected CHO cells. Ring-like structures, each with four peaks and one valley at its center, were observed in the vicinity of the Qdots, suggesting that these structures are prestin expressed in the plasma membranes of the prestin-transfected CHO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196

    Article  PubMed  CAS  Google Scholar 

  2. Kachar B, Brownell WE, Altschuler R, Fex J (1986) Electrokinetic shape changes of cochlear outer hair cells. Nature 322:365–368

    Article  PubMed  CAS  Google Scholar 

  3. Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol 388:323–347

    PubMed  CAS  Google Scholar 

  4. Santos-Sacchi J, Dilger JP (1988) Whole cell currents and mechanical responses of isolated outer hair cells. Hear Res 35:143–150

    Article  PubMed  CAS  Google Scholar 

  5. Dallos P, Fakler B (2002) Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3:104–111

    Article  PubMed  CAS  Google Scholar 

  6. Dallos P, Evans BN, Hallworth R (1991) Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature 350:155–157

    Article  PubMed  CAS  Google Scholar 

  7. Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155

    Article  PubMed  CAS  Google Scholar 

  8. Zheng J, Long KB, Shen W, Madison LD, Dallos P (2001) Prestin topology: localization of protein epitopes in relation to the plasma membrane. NeuroReport 12:1929–1935

    Article  PubMed  CAS  Google Scholar 

  9. Deák L, Zheng J, Orem A, Du GG, Aguinaga S, Matsuda K, Dallos P (2005) Effects of cyclic nucleotides on the function of prestin. J Physiol 563:483–496

    Article  PubMed  CAS  Google Scholar 

  10. Navaratnam D, Bai JP, Samaranayake H, Santos-Sacchi J (2005) N-terminal-mediated homomultimerization of prestin, the outer hair cell motor protein. Biophys J 89:3345–3352

    Article  PubMed  CAS  Google Scholar 

  11. Zheng J, Du GG, Anderson CT, Keller JP, Orem A, Dallos P, Cheatham M (2006) Analysis of the oligomeric structure of the motor protein prestin. J Biol Chem 281:19916–19924

    Article  PubMed  CAS  Google Scholar 

  12. Mio K, Kubo Y, Ogura T, Yamamoto T, Arisaka F, Sato C (2008) The Motor Protein Prestin Is a Bullet-shaped Molecule with Inner Cavities. J Biol Chem 283:1137–1145

    Article  PubMed  CAS  Google Scholar 

  13. Arima T, Kuraoka A, Toriya R, Shibata Y, Uemura T (1991) Quick-freeze, deep-etch visualization of the ‘cytoskeletal spring’ of cochlear outer hair cells. Cell Tissue Res 263:91–97

    Article  PubMed  CAS  Google Scholar 

  14. Forge A (1991) Structural features of the lateral walls in mammalian cochlear outer hair cells. Cell Tissue Res 265:473–483

    Article  PubMed  CAS  Google Scholar 

  15. Kalinec F, Holley MC, Iwasa KH, Lim DJ, Kachar B (1992) A membrane-based force generation mechanism in auditory sensory cells. Proc Natl Acad Sci U S A 89:8671–8675

    Article  PubMed  CAS  Google Scholar 

  16. Souter M, Nevill G, Forge A (1995) Postnatal development of membrane specialisations of gerbil outer hair cells. Hear Res 91:43–62

    Article  PubMed  CAS  Google Scholar 

  17. Le Grimellec C, Giocondi MC, Lenoir M, Vater M, Sposito G, Pujol R (2002) High-resolution three-dimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy. J Comp Neurol 451:62–69

    Article  PubMed  Google Scholar 

  18. Murakoshi M, Gomi T, Iida K, Kumano S, Tsumoto K, Kumagai I, Ikeda K, Kobayashi T, Wada H (2006) Imaging by atomic force microscopy of the plasma membrane of prestin-transfected Chinese hamster ovary cells. J Assoc Res Otolaryngol 7:267–278

    Article  PubMed  Google Scholar 

  19. Iida K, Konno K, Oshima T, Tsumoto K, Ikeda K, Kumagai I, Kobayashi T, Wada H (2003) Stable expression of the motor protein prestin in Chinese hamster ovary cells. JSME Int J 46C:1266–1274

    Google Scholar 

  20. Iida K, Tsumoto K, Ikeda K, Kumagai I, Kobayashi T, Wada H (2005) Construction of an expression system for the motor protein prestin in Chinese hamster ovary cells. Hear Res 205:262–270

    Article  PubMed  CAS  Google Scholar 

  21. Murakoshi M, Wada H (2008) Atomic force microscopy in studies of the cochlea. In: Walker J (ed) Molecular protocols in auditory research. Humana Press, Totowa, NJ

    Google Scholar 

  22. Ziegler U, Vinckier A, Kernen P, Zeisel D, Biber J, Semenza G, Murer H, Groscurth P (1998) Preparation of basal cell membranes for scanning probe microscopy. FEBS Lett 436:179–184

    Article  PubMed  CAS  Google Scholar 

  23. Hartmann WK, Saptharishi N, Yang XY, Mitra G, Soman G (2004) Characterization and analysis of thermal denaturation of antibodies by size exclusion high-performance liquid chromatography with quadruple detection. Anal Biochem 325:227–239

    Article  PubMed  CAS  Google Scholar 

  24. Hertadi R, Gruswitz F, Silver L, Koide A, Koide S, Arakawa H, Ikai A (2003) Unfolding mechanics of multiple OspA substructures investigated with single molecule force spectroscopy. J Mol Biol 333:993–1002

    Article  PubMed  CAS  Google Scholar 

  25. Lärmer J, Schneider SW, Danker T, Schwab A, Oberleithner H (1997) Imaging excised apical plasma membrane patches of MDCK cells in physiological conditions with atomic force microscopy. Pflugers Arch 434:254–260

    Article  PubMed  Google Scholar 

  26. Iida K, Nagaoka T, Tsumoto K, Ikeda K, Kumagai I, Kobayashi T, Wada H (2004) Relationship between fluorescence intensity of GFP and the expression level of prestin in a prestin-expressing Chinese hamster ovary cell line. JSME Int J 47C:970–976

    Google Scholar 

  27. Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci U S A 101:4083–4088

    Article  PubMed  CAS  Google Scholar 

  28. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  PubMed  CAS  Google Scholar 

  29. Dong R, Yu LE (2003) Investigation of surface changes of nanoparticles using TM-AFM phase imaging. Environ Sci Technol 37:2813–2819

    Article  PubMed  CAS  Google Scholar 

  30. Janovjak H, Kedrov A, Cisneros DA, Sapra KT, Struckmeier J, Muller DJ (2006) Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiol Aging 27:546–561

    Article  PubMed  CAS  Google Scholar 

  31. Dietz H, Bertz M, Schlierf M, Berkemeier F, Bornschlogl T, Junker JP, Rief M (2006) Cysteine engineering of polyproteins for single-molecule force spectroscopy. Nat Protoc 1:80–84

    Article  PubMed  CAS  Google Scholar 

  32. Cao Y, Li H (2008) How do chemical denaturants affect the mechanical folding and unfolding of proteins? J Mol Biol 375:316–324

    Article  PubMed  CAS  Google Scholar 

  33. Dong XX, Iwasa KH (2004) Tension sensitivity of prestin: comparison with the membrane motor in outer hair cells. Biophys J 86:1201–1208

    Article  PubMed  CAS  Google Scholar 

  34. Santos-Sacchi J (2002) Functional motor microdomains of the outer hair cell lateral membrane. Pflugers Arch 445:331–336

    Article  PubMed  CAS  Google Scholar 

  35. Zhang M, Kalinec F (2002) Structural microdomains in the lateral plasma membrane of cochlear outer hair cells. J Assoc Res Otolaryngol 3:289–301

    Article  PubMed  Google Scholar 

  36. Santos-Sacchi J, Zhao HB (2003) Excitation of fluorescent dyes inactivates the outer hair cell integral membrane motor protein prestin and betrays its lateral mobility. Pflugers Arch 446:617–622

    Article  PubMed  CAS  Google Scholar 

  37. de Monvel JB, Brownell WE, Ulfendahl M (2006) Lateral diffusion anisotropy and membrane lipid/skeleton interaction in outer hair cells. Biophys J 91:364–381

    Article  PubMed  CAS  Google Scholar 

  38. Organ LE, Raphael RM (2007) Application of fluorescence recovery after photobleaching to study prestin lateral mobility in the human embryonic kidney cell. J Biomed Opt 12:021003

    Article  PubMed  CAS  Google Scholar 

  39. Sturm AK, Rajagopalan L, Yoo D, Brownell WE, Pereira FA (2007) Functional expression and microdomain localization of prestin in cultured cells. Otolaryngol Head Neck Surg 136:434–439

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research on Priority Areas 15086202 from the Ministry of Education, Cultures, Sports, Science and Technology of Japan, Grant-in-Aid for Scientific Research (B) 18390455 from the Japan Society for the Promotion of Science, a Health and Labour Science Research Grant from the Ministry of Health, Labour and Welfare of Japan, Grant-in-Aid for Exploratory Research 18659495 from the Ministry of Education, Culture, Sports, Science and Technology of Japan, a grant from the Human Frontier Science Program, a grant from the Iketani Science and Technology Foundation and a grant from the Daiwa Securities Health Foundation to H.W., Grant-in-aid for JSPS Fellows 19002194 from the Japan Society for the Promotion of Science and Special Research Grants 11170012 and 11180001 from the Tohoku University 21st Century COE Program of the “Future Medical Engineering Based on Bio-nanotechnology” to M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Wada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murakoshi, M., Iida, K., Kumano, S. et al. Immune atomic force microscopy of prestin-transfected CHO cells using quantum dots. Pflugers Arch - Eur J Physiol 457, 885–898 (2009). https://doi.org/10.1007/s00424-008-0560-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0560-z

Keywords

Navigation