Skip to main content

Advertisement

Log in

Rear-arc vs. arc-front volcanoes in the Katmai reach of the Alaska Peninsula: a critical appraisal of across-arc compositional variation

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Physical and compositional data and K-Ar ages are reported for 14 rear-arc volcanoes that lie 11–22 km behind the narrowly linear volcanic front defined by the Mount Katmai-to-Devils Desk chain on the Alaska Peninsula. One is a 30-km3 stratocone (Mount Griggs; 51–63% SiO2) active intermittently from 292 ka to Holocene. The others are monogenetic cones, domes, lava flows, plugs, and maars, of which 12 were previously unnamed and unstudied; they include seven basalts (48–52% SiO2), four mafic andesites (53–55% SiO2), and three andesite-dacite units. Six erupted in the interval 500–88 ka, one historically in 1977, and five in the interval 3–2 Ma. No migration of the volcanic front is discernible since the late Miocene, so even the older units erupted well behind the front. Discussion explores the significance of the volcanic front and the processes that influence compositional overlaps and differences among mafic products of the rear-arc volcanoes and of the several arc-front edifices nearby. The latter have together erupted a magma volume of about 200 km3, at least four times that of all rear-arc products combined. Correlation of Sr-isotope ratios with indices of fractionation indicates crustal contributions in volcanic-front magmas (0.7033–0.7038), but lack of such trends among the rear-arc units (0.70298–0.70356) suggests weaker and less systematic crustal influence. Slab contributions and mantle partial-melt fractions both appear to decline behind the front, but neither trend is crisp and unambiguous. No intraplate mantle contribution is recognized nor is any systematic across-arc difference in intrinsic mantle-wedge source fertility discerned. Both rear-arc and arc-front basalts apparently issued from fluxing of typically fertile NMORB-source mantle beneath the Peninsular terrane, which docked here in the Mesozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8 A
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adam J, Green TH, Sie SH, Ryan CG (1997) Trace element partitioning between aqueous fluids, silicate melts and minerals. Eur J Mineral 9:569–584

    CAS  Google Scholar 

  • Ayers JC, Dittmer SK, Layne GD (1997) Partitioning of elements between peridotite and H2O at 2.0–3.0 GPa and 900–1,100 °C, and application to models of subduction zone processes. Earth Planet Sci Lett 150:381–398

    Google Scholar 

  • Bacon CR, Bruggman PE, Christiansen RL, Clynne MA, Donnelly-Nolan JM, Hildreth W (1997) Primitive magmas at five Cascade volcanic fields: melts from hot, heterogeneous sub-arc mantle. Can Mineral 35:397–423

    CAS  Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256

    CAS  Google Scholar 

  • Baedecker PA (1987) Methods for geochemical analysis: US Geol Surv Bull 1770

    Google Scholar 

  • Blundy J, Wood B (2003) Mineral-melt partitioning of U, Th, and their daughters. Rev Mineral Geochem 52:59–123

    CAS  Google Scholar 

  • Bourdon B, Wörner G, Zindler A (2000) U-series evidence for crustal involvement and magma residence times in the petrogenesis of Parinacota volcano, Chile. Contrib Mineral Petrol 139:458–469

    Article  CAS  Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347

    CAS  Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Mineral-aqueous fluid partitioning of trace elements at 900 °C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochim Cosmochim Acta 59:3331–3350

    CAS  Google Scholar 

  • Bureau H, Keppler H (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet Sci Lett 165:187–196

    CAS  Google Scholar 

  • Cervantes P, Wallace PJ (2003) Role of H2O in subduction zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31:235–238

    Article  CAS  Google Scholar 

  • Chabaux F, Hémond C, Allègre CJ (1999) 238 U-230Th-226Ra disequilibria in the Lesser Antilles arc: implications for mantle metasomatism. Chem Geol 153:171–185

    Article  CAS  Google Scholar 

  • Condomines M, Sigmarsson O (1993) Why are so many arc magmas close to 238U-230Th radioactive equilibrium? Geochim Cosmochim Acta 57:4491–4497

    CAS  Google Scholar 

  • Cross TA, Pilger RH Jr (1982) Controls of subduction geometry, location of magmatic arcs, and tectonics of arc and back-arc regions. Geol Soc Am Bull 93:545–562

    Google Scholar 

  • Davidson JP (1987) Crustal contamination versus subduction zone enrichment: examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks. Geochim Cosmochim Acta 51:2185–2198

    Article  CAS  Google Scholar 

  • Davies JH, Stevenson DJ (1992) Physical model of source region of subduction zone volcanics. J Geophys Res 97:2037–2070

    Google Scholar 

  • Delany JM, Helgeson HC (1978) Calculation of thermodynamic consequences of dehydration in subducting oceanic crust to 100 kb and >800 °C. Am J Sci 278:638–686

    CAS  Google Scholar 

  • Detterman RL, Case JE, Miller JW, Wilson FH, Yount ME (1996) Stratigraphic framework of the Alaska Peninsula. US Geol Surv Bull 1969-A, 74 pp

  • Detterman RL, Case JE, Wilson FH, Yount ME (1987) Geologic map of the Ugashik, Bristol Bay, and western part of Karluk Quadrangle, Alaska. US Geol Surv Map I-1685, scale 1:250,000

  • Dosseto A, Bourdon B, Joron J-L, Dupré B (2003) U-Th-Pa-Ra study of the Kamchatka arc: new constraints on the genesis of arc lavas. Geochim Cosmochim Acta 67:2857–2877

    Article  CAS  Google Scholar 

  • Elliot T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019

    CAS  Google Scholar 

  • Ewart A, Hawkesworth CJ (1987) Pleistocene-Recent Tonga-Kermadec arc lavas: interpretation of new isotopic and rare-earth data in terms of a depleted mantle source model. J Petrol 28:495–530

    CAS  Google Scholar 

  • Feineman MD, DePaolo DJ (2003) Steady-state 226Ra/230Th disequilibrium in mantle minerals: implications for melt transport rates in island arcs. Earth Planet Sci Lett 215:339–355

    Article  CAS  Google Scholar 

  • Fierstein J, Hildreth W (1992) The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska. Bull Volcanol 54:646–684

    Google Scholar 

  • Fliedner MM, Klemperer SL (2000) Crustal structure transition from oceanic arc to continental arc, eastern Aleutian Islands and Alaska Peninsula. Earth Planet Sci Lett 179:567–579

    Article  CAS  Google Scholar 

  • Forneris JF, Holloway JR (2003) Phase equilibria in subducting basaltic crust: implications for H2O Release from the slab. Earth Planet Sci Lett 214:187–201

    Article  CAS  Google Scholar 

  • Furukawa Y (1993) Magmatic processes under arcs and formation of the volcanic front. J Geophys Res 98:8309–8319

    Google Scholar 

  • George R, Turner S, Hawkesworth C, Morris J, Nye C, Ryan J, Zheng S-H (2003) Melting processes and fluid and sediment transport rates along the Alaska-Aleutian arc from an integrated U-Th-Ra-Be isotope study. J Geophys Res 108 (B5) 2252: ECV 6:1–25

    Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin Heidelberg New York, 390 pp

  • Gill JB, Williams RW (1990) Th isotope and U-series studies of subduction-related volcanic rocks. Geochim Cosmochim Acta 54:1427–1442

    CAS  Google Scholar 

  • Green TH, Pearson NJ (1986) Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T. Chem Geol 54:185–201

    CAS  Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142:375–396

    Google Scholar 

  • Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J Geophys Res 108 (B1) 2029: ESE 10:1–26

    Google Scholar 

  • Hasegawa A, Zhao D (1994) Deep structure of island arc magmatic regions as inferred from seismic observations. In: Ryan MP (ed) Magmatic systems. Academic Press, San Diego, pp 179–195

  • Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Mantle and slab contributions in arc magmas. Ann Rev Earth Planet Sci 21:175–204

    CAS  Google Scholar 

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U-Th isotopes in arc magmas: implications for transfer from the subducted crust. Science 276:551–555

    CAS  PubMed  Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC (1986) Multiple sources for basaltic arc rocks from the Southern Volcanic Zone of the Andes (34°–41°S): trace-element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res 91:5963-5983

    CAS  Google Scholar 

  • Hildreth W (1983) The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. J Volcanol Geotherm Res 18:1–56

    CAS  Google Scholar 

  • Hildreth W (1987) New perspectives on the eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. Bull Volcanol 49:680–693

    CAS  Google Scholar 

  • Hildreth W (1991) The timing of caldera collapse at Mount Katmai in response to magma withdrawal toward Novarupta. Geophys Res Lett 18:1541–1544

    Google Scholar 

  • Hildreth W, Fierstein J (2000) Katmai volcanic cluster and the great eruption of 1912. Geol Soc Am Bull 112:1595–1620

    Article  Google Scholar 

  • Hildreth W, Fierstein J (2003) Geologic map of the Katmai volcanic cluster, Katmai National Park, Alaska. US Geol Surv Map I-2778, scale 1:63,360

  • Hildreth W, Fierstein J, Lanphere MA, Siems DF (1999) Alagogshak volcano: a Pleistocene andesite-dacite stratovolcano in Katmai National Park. In: Kelley KD (ed) Geologic studies in Alaska by the U.S. Geological Survey 1997. US Geol Surv Prof Pap 1614:105–113

    Google Scholar 

  • Hildreth W, Fierstein J, Lanphere MA, Siems DF (2000) Mount Mageik: a compound stratovolcano in Katmai National Park. In: Kelley KD, Gough LP (eds) Geologic studies in Alaska by the U.S. Geological Survey 1998. US Geol Surv Prof Pap 1615:23–41

    Google Scholar 

  • Hildreth W, Fierstein J, Lanphere MA, Siems DF (2001) Snowy Mountain: a pair of small andesite- dacite stratovolcanoes in Katmai National Park. In: Gough LP, Wilson FH (eds) Geologic studies in Alaska by the U.S. Geological Survey 1999. US Geol Surv Prof Pap 1633:13–34

    Google Scholar 

  • Hildreth W, Fierstein J, Lanphere MA, Siems DF (2002) Mount Griggs: a compositionally distinctive Quaternary stratovolcano behind the main volcanic line in Katmai National Park. In: Wilson FH, Galloway JP (eds) Studies by the U.S. Geological Survey in Alaska, 2000. US Geol Surv Prof Pap 1662:87–112

    Google Scholar 

  • Hildreth W, Fierstein J, Lanphere MA, Siems DF (2003a) Trident Volcano: four contiguous stratocones adjacent to Katmai Pass, Alaska Peninsula. In: Galloway JP (ed) Studies in Alaska by the U.S. Geological Survey 2001. US Geol Surv Prof Pap 1678:153–180

    Google Scholar 

  • Hildreth W, Lanphere MA (1994) Potassium-argon geochronology of a basalt-andesite-dacite arc system: the Mount Adams volcanic field, Cascade Range of southern Washington. Geol Soc Am Bull 106:1413–1429

    CAS  Google Scholar 

  • Hildreth W, Lanphere MA, Fierstein J (2003b) Geochronology and eruptive history of the Katmai volcanic cluster, Alaska Peninsula. Earth Planet Sci Lett 214:93–114

    Article  CAS  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    CAS  Google Scholar 

  • Hyndman RD, Peacock SM (2003) Serpentinization of the forearc mantle. Earth Planet Sci Lett 212:417–432

    Article  CAS  Google Scholar 

  • Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1: paper 1999GC000014

    Article  Google Scholar 

  • Kay SM, Kay RW (1985) Aleutian tholeiitic and calcalkaline magma series, I: the mafic phenocrysts. Contrib Mineral Petrol 90:276–290

    Google Scholar 

  • Kay SM, Kay RW (1994) Aleutian magmas in space and time. In: Plafker G, Berg HC (eds) The geology of Alaska: Chapter 22 of the Geology of North America, vol G-1, Geol Soc Am, pp 389–449

  • Kienle J, Kyle PR, Self S, Motyka RJ, Lorenz V (1980) Ukinrek Maars, Alaska, I. April 1977 eruption sequence, petrology and tectonic setting. J Volcanol Geotherm Res 7:11–37

    Article  CAS  Google Scholar 

  • Kienle J, Swanson SE, Pulpan H (1983) Magmatism and subduction in the eastern Aleutian arc. In: Shimozuru D, Yokoyama I (eds) Arc volcanism: physics and tectonics. Terra Sci Publ Co, Tokyo, pp 191–224

  • Kincaid C, Sacks IS (1997) Thermal and dynamical evolution of the upper mantle in subduction zones. J Geophys Res 102:12295–12315

    Article  Google Scholar 

  • Kirby S, Engdahl ER, Denlinger R (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. Geophys Mon 96:195–214

    Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205

    CAS  Google Scholar 

  • Kosco DG (1981) Characteristics of andesitic to dacitic volcanism at Katmai National Park, Alaska. Berkeley, Univ California, PhD Thesis, 249 pp

  • Kuhn TS (1962) The structure of scientific revolutions. U Chicago Press, 172 pp

  • Kushiro I (1987) A petrological model of the mantle wedge and lower crust in the Japanese island arcs. In: Mysen BO (ed) Magmatic processes: physicochemical principles. Geochem Soc Spec Publ 1:165–181

    CAS  Google Scholar 

  • Lanphere MA (2000) Comparison of conventional K-Ar and 40Ar/ 39Ar dating of young mafic volcanic rocks. Quat Res 53:294–301

    Article  CAS  Google Scholar 

  • LeBas MJ, LeMaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    CAS  Google Scholar 

  • Leeman WP, Smith DR, Hildreth W, Palacz Z, Rogers N (1990) Compositional diversity of late Cenozoic basalts in a transect across the southern Washington Cascades: implications for subduction zone magmatism. J Geophys Res 95:19561–19582

    Google Scholar 

  • Lowenstern JB, Wallmann PC, Pollard DD (1991) The West Mageik Lake sill complex as an analogue for magma transport during the 1912 eruption at the Valley of Ten Thousand Smokes, Alaska. Geophys Res Lett 18:1569–1572

    Google Scholar 

  • Luhr JF (1992) Slab-derived fluids and partial melting in subduction zones: Insights from two contrasting Mexican volcanoes (Colima and Ceboruco). J Volcanol Geotherm Res 54:1–18

    CAS  Google Scholar 

  • Luhr JF (1997) Extensional tectonics and the diverse primitive volcanic rocks in the western Mexican Volcanic Belt. Can Mineral 35:473–500

    CAS  Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    CAS  Google Scholar 

  • Mibe K, Fujii T, Yasuda A (1999) Control of the location of the volcanic front in island arcs by aqueous fluid connectivity in the mantle wedge. Nature 401:259–262

    CAS  Google Scholar 

  • Moll-Stalcup EJ (1994) Latest Cretaceous and Cenozoic magmatism in mainland Alaska. In: Plafker G, Berg HC (eds) The geology of Alaska: Chapter 18 of the Geology of North America, vol G-1, Geol Soc Am, pp 589–619

  • Moore JC, et al. (1991) EDGE deep seismic reflection transect of the eastern Aleutian arc-trench layered lower crust reveals underplating and continental growth. Geology 19:420–424

    Article  Google Scholar 

  • Moran S (2003) Multiple seismogenic processes for high-frequency earthquakes at Katmai National Park, Alaska: evidence from stress tensor inversions of fault-plane solutions. Bull Seismol Soc Am 93:94–108

    Google Scholar 

  • Nakamura K, Jacob KH, Davies JN (1977) Volcanoes as possible indicators of tectonic stress orientation—Aleutians and Alaska. Pageoph 115:87–112

    Google Scholar 

  • Nakamura K, Plafker G, Jacob KH, Davies JN (1980) A tectonic stress trajectory map of Alaska using information from volcanoes and faults. Bull Earthquake Res Inst 55:89–100

    Google Scholar 

  • Newman S, Macdougall JD, Finkel RC (1986) Petrogenesis and 230Th-238U disequilibrium at Mount Shasta, California, and in the Cascades. Contrib Mineral Petrol 93:195–206

    Google Scholar 

  • Newman SJ, Macdougall D, Finkel RC (1984) Petrogenesis and 230Th-238U disequilibrium in island arc lavas: evidence from the Aleutians and the Marianas. Nature 308:268–270

    CAS  Google Scholar 

  • Nichols GT, Wyllie PJ, Stern CR (1996) Experimental melting of pelagic sediment: constraints relevant to subduction. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. Geophys Mon 96:293–298

    Google Scholar 

  • Oleskevich DA, Hyndman RD, Wang K (1999) The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J Geophys Res 104:14965–14991

    Article  Google Scholar 

  • Ono S (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt compositions: implications for water transport in subduction zones. J Geophys Res 103:18253–18267

    CAS  Google Scholar 

  • Page RA, Biswas NN, Lahr JC, Pulpan H (1991) Seismicity of continental Alaska. In: Slemmons DB, Engdahl ER, Zoback MD, Blackwell DD (eds) Neotectonics of North America. Boulder (Colorado), Geol Soc Am, Decade Map vol 1

  • Peacock SM (1993) Large-scale hydration of the lithosphere above subducting slabs. Chem Geol 108:49–59

    CAS  Google Scholar 

  • Peacock SM (1996) Thermal and petrologic structure of subduction zones. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. Geophys Mon 96:119–133

    Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29:299–302

    Article  CAS  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Orogenic andesites and related rocks. Wiley, Chichester (UK), pp 525–548

  • Pearce JA, Baker PE, Harvey PK, Luff IW (1995) Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich island arc. J Petrol 36:1073–1109

    CAS  Google Scholar 

  • Pearce JA, Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geol Soc Spec Publ 76:373–403

    Google Scholar 

  • Plafker G, Moore JC, Winkler GR (1994) Geology of the southern Alaska margin. In: Plafker G, Berg HC (eds) The geology of Alaska: Chapter 12 of the Geology of North America, vol G-1, Geol Soc Am, pp 389–449

  • Plank T, Langmuir CH (1988) An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett 90:349–370

    Article  CAS  Google Scholar 

  • Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394

    CAS  Google Scholar 

  • Ponko SC, Peacock SM (1995) Thermal modeling of the southern Alaska subduction zone: insight into the petrology of the subducting slab and overlying mantle wedge. J Geophys Res 100:22117–22128

    Article  Google Scholar 

  • Reagan MK, Morris JD, Herrstrom EA, Murrell MT (1994) Uranium series and beryllium isotope evidence for an extended history of subduction modification of the mantle below Nicaragua. Geochim Cosmochim Acta 58:4199–4212

    CAS  Google Scholar 

  • Reagan MK, Sims KWW, Erich J, Thomas RB, Cheng H, Edwards RL, Layne G, Ball L (2003) Time-scales of differentiation from mafic parents to rhyolite in North American continental arcs. J Petrol 44:1703–1726

    Article  CAS  Google Scholar 

  • Regelous M, Collerson KD, Ewart A, Wendt JI (1997) Trace element transport rates in subduction zones: evidence from Th, Sr and Pb isotope data for Tonga-Kermadec arc lavas. Earth Planet Sci Lett 150:291–302

    CAS  Google Scholar 

  • Riehle JR, Detterman RL, Yount ME, Miller JW (1993) Geologic map of the Mount Katmai quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska. US Geol Surv Map I-2204, scale 1:250,000

  • Rothman T (1989) Science à la mode: physical fashions and fictions. Princeton Univ Press, 207 pp

  • Rubenstone JL, Langmuir CH, Hildreth W (1985) Isotope and trace element data bearing on the sources and evolution of magmas in the Katmai region, Alaska. Geol Soc Am Abst Prog 17:704

    Google Scholar 

  • Ryerson FJ, Watson EB (1987) Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet Sci Lett 86:225–239

    CAS  Google Scholar 

  • Sakuyama M (1983) Petrology of arc volcanic rocks and their origin by mantle diapirs. J Volcanol Geotherm Res 18:297–320

    Article  CAS  Google Scholar 

  • Sakuyama M, Nesbitt RW (1986) Geochemistry of the Quaternary volcanic rocks of the northeast Japan arc. J Volcanol Geotherm Res 29:413–450

    CAS  Google Scholar 

  • Schiano P, Clocchiatti R, Shimizu N, Maury RC, Jochum KP, Hofmann AW (1995) Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377:595–600

    CAS  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    CAS  Google Scholar 

  • Self S, Kienle J, Huot J-P (1980) Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. J Volcanol Geotherm Res 7:11–37

    Article  CAS  Google Scholar 

  • Shew N, Lanphere MA (1992) Map showing potassium-argon ages from the Mount Katmai and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula, Alaska. US Geol Surv Misc Field Studies Map MF-2021-E, scale 1:250,000

  • Simkin T, Siebert L (1994) Volcanoes of the world: Geoscience Press, Tucson, 349 pp

    Google Scholar 

  • Singer BS, Dungan MA, Layne GD (1995) Textures and Sr, Ba, Mg, Fe, K, and Ti compositional profiles in volcanic plagioclase: clues to the dynamics of calcalkaline magma chambers. Am Mineral 80:776–798

    CAS  Google Scholar 

  • Stacey JS, Sherrill ND, Dalrymple GB, Lanphere MA, Carpenter NV (1981) A five-collector system for the simultaneous measurement of argon isotope ratios in a static mass spectrometer. Int J Mass Spectrometry Ion Phys 39:167–180

    Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana Trough magmas. Earth Planet Sci Lett 121:293–325

    CAS  Google Scholar 

  • Sugimura A (1960) Zonal arrangement of some geophysical and petrological features in Japan and its environs. J Fac Sci Tokyo Univ, ser 2, 12:133–153

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ 42:313–345

    Google Scholar 

  • Tatsumi Y (1986) Formation of the volcanic front in subduction zones. Geophys Res Lett 13:717–720

    Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell Science, 211 pp

  • Tatsumi Y, Isoyama H (1988) Transportation of beryllium with H2O at high pressures: Implication for magma genesis in subduction zones. Geophys Res Lett 15:180–183

    CAS  Google Scholar 

  • Tatsumi Y, Kogiso T (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 2. Origin of chemical and physical characteristics in arc magmatism. Earth Planet Sci Lett 148:207–221

    CAS  Google Scholar 

  • Tatsumi Y, Sakuyama M, Fukuyama H, Kushiro I (1983) Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J Geophys Res 88:5815–5825

    CAS  Google Scholar 

  • Thomas RB, Hirschmann MM, Cheng H, Reagan MK, Edwards RL (2002) (231Pa/235U)-(230 Th/238U) of young mafic volcanic rocks from Nicaragua and Costa Rica and the influence of flux melting on U-series systematics of arc lavas. Geochim Cosmochim Acta 66:4287–4309

    Article  CAS  Google Scholar 

  • Turner S, Bourdon B, Gill J (2003) Insights into magma genesis at convergent margins from U-series isotopes. Rev Mineral & Geochem 52:255–315

    Google Scholar 

  • Turner S, Hawkesworth C, Rogers N, Bartlett J, Worthington T, Hergt J, Pearce J, Smith I (1997) 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochim Cosmochim Acta 61:4855–4884

    CAS  Google Scholar 

  • Turner S, McDermott F, Hawkesworth C, Kepezhinskas P (1998) A U-series study of lavas from Kamchatka and the Aleutians: constraints on source composition and melting processes. Contrib Mineral Petrol 133:217–234

    Article  CAS  Google Scholar 

  • Ulmer P (2001) Partial melting in the mantle wedge—the role of H2O in the genesis of mantle-derived ‘arc-related’ magmas. Phys Earth Planet Int 127:215–232

    Article  CAS  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    CAS  Google Scholar 

  • von Drach V, Marsh BD, Wasserburg GJ (1986) Nd and Sr isotopes in the Aleutians: multicomponent parenthood of island-arc magmas. Contrib Mineral Petrol 92:13–34

    Google Scholar 

  • von Huene R (1989) Continental margins around the Gulf of Alaska. In: Winterer EL, Hussong DM, Decker RW (eds) The eastern Pacific Ocean and Hawaii: Geol Soc Am, the Geology of North America, vol N, pp 383–401

  • Walker JA, Patino LC, Cameron BI, Carr MJ (2000) Petrogenetic insights provided by compositional transects across the Central American arc: southeastern Guatemala and Honduras. J Geophys Res 105:18949–18963

    Article  CAS  Google Scholar 

  • Wood BJ, Blundy JD, Robinson JAC (1999) The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochim Cosmochim Acta 63:1613–1620

    Article  CAS  Google Scholar 

  • Wood CA, Kienle J (eds) (1990) Volcanoes of North America. Cambridge Univ Press, 354 pp

  • Woodhead JD, Eggins S, Gamble J (1993) High field strength and transition element systematics in island arc and back-arc basin basalts: evidence for multi-phase melt extraction and a depleted mantle wedge. Earth Planet Sci Lett 114:491–504

    CAS  Google Scholar 

  • Woodhead JD, Eggins SM, Johnson RW (1998) Magma genesis in the New Britain island arc: further insights into melting and mass transfer processes. J Petrol 39:1641–1668

    CAS  Google Scholar 

  • Yokoyama T, Kobayashi K, Kuritani T, Nakamura E (2003) Mantle metasomatism and rapid ascent of slab components beneath island arcs: evidence from 238U-230Th-226Ra disequilibria of Miyakejima volcano, Izu arc, Japan. J Geophys Res 108 (B7) 2329: ECV 1:1–25

    Google Scholar 

Download references

Acknowledgments

We are grateful for thoughtful reviews by Charlie Bacon, Mike Clynne, Rhiannon George, and Paul Wallace. Fieldwork was supported by the Alaska Volcano Observatory. Helicopter pilots Paul Walters, Bill Springer, Rick Farrish, Jim Sink, and Sam Egli got us to these volcanoes—as remote as their own magma sources and commonly as murky—and they brought us back alive, though we were often pale-green, depleted, and as wobbly as models of arc magmatism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wes Hildreth.

Additional information

Editorial responsibility: T.L. Grove

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildreth, W., Fierstein, J., Siems, D.F. et al. Rear-arc vs. arc-front volcanoes in the Katmai reach of the Alaska Peninsula: a critical appraisal of across-arc compositional variation. Contrib Mineral Petrol 147, 243–275 (2004). https://doi.org/10.1007/s00410-004-0558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0558-2

Keywords

Navigation