Skip to main content

Advertisement

Log in

Quantitative determination of isoniazid in biological samples by cation-selective exhaustive injection–sweeping–micellar electrokinetic chromatography

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, infects approximately one third of the current world population. Isoniazid is one of the most frequently used first-line anti-TB drugs. In this study, we developed a sensitive cation-selective exhaustive injection–sweeping–micellar electrokinetic chromatography method (CSEI-Sweep-MEKC) for analyzing isoniazid in human plasma. Parameters including acetonitrile (ACN) percentage in the separation buffer; the injection time, and concentration of the high-conductivity buffer; sodium dodecyl sulfate (SDS) concentration; phosphate concentration in the sample matrix; and the sample injection time were all optimized to obtain the best analytical performance. The optimal background electrolyte comprised 50 mM phosphate buffer, 100 mM SDS, and 15% ACN. Non-micelle background electrolyte, containing 75 mM phosphate buffer and 15% ACN, was first injected into the capillary, followed by a short plug of 200 mM phosphate (high-conductivity buffer). Run-to-run repeatability (n = 3) and intermediate precision (n = 3) of peak area ratios were found to be lower than 8.7% and 11.4% RSD, respectively. The accuracy of the method was within 98.1–106.9%. The limit of detection of isoniazod in human plasma was 9 ng mL−1. Compared with conventional MEKC, the enhancement factor of the CSEI-Sweep-MEKC method was 85 in plasma samples. The developed method was successfully used to determine isoniazid concentration in patient plasma. The results demonstrated that CSEI-Sweep-MEKC has the potential to analyze isoniazid in human plasma for therapeutic drug monitoring and clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO (2010) Tuberculosis. WHO Media Centre. http://www.who.int/mediacentre/factsheets/fs104/en/. Accessed April 15 2011

  2. Berning SE, Huitt GA, Iseman MD, Peloquin CA (1992) Malabsorption of antituberculosis medications by a patient with AIDS. N Engl J Med 327(25):1817–1818

    Article  CAS  Google Scholar 

  3. Ray J, Gardiner I, Marriott D (2003) Managing antituberculosis drug therapy by therapeutic drug monitoring of rifampicin and isoniazid. Intern Med J 33(5–6):229–234

    Article  CAS  Google Scholar 

  4. Patel KB, Belmonte R, Crowe HM (1995) Drug malabsorption and resistant tuberculosis in HIV-infected patients. N Engl J Med 332(5):336–337

    Article  CAS  Google Scholar 

  5. Ellard GA, Wallace SM, Gammon PT (1972) Determination of isoniazid and its metabolites acetylisoniazid, monoacetylhydrazine, diazetylhydrazine, isonicotinic acid and isonicotinylglycine in serum and urine. Biochem J 126(3):449–458

    CAS  Google Scholar 

  6. Eidus L, Harnanan AM (1971) More sensitive spectrophotometric method for determination of isoniazid in serum or plasma. Clin Chem 17(6):492–494

    CAS  Google Scholar 

  7. Devani MB, Shishoo CJ, Patel MA, Bhalara DD (1978) Spectrophotometric determination of isoniazid in presence of its hydrazones. J Pharm Sci 67(5):661–663

    Article  CAS  Google Scholar 

  8. Lever M (1972) Rapid fluorometric or spectrophotometric determination of isoniazid. Biochem Med 6(1):65–71

    Article  CAS  Google Scholar 

  9. Zhou ZF, Chen LY, Liu P, Shen M, Zou F (2010) Simultaneous determination of isoniazid, pyrazinamide, rifampicin and acetylisoniazid in human plasma by high-performance liquid chromatography. Anal Sci 26(11):1133–1138

    Article  CAS  Google Scholar 

  10. Milan-Segovia R, Perez-Flores G, Torres-Tirado JD, Hermosillo-Ramirez X, Vigna-Perez M, Romano-Moreno S (2007) Simultaneous HPLC determination of isoniazid and acetylisoniazid in plasma. Acta Chromatogr 19:110–118

    CAS  Google Scholar 

  11. Mahjub R, Khalili H, Amini M (2010) Development and validation of a novel gradient LC method for simultaneous determination of isoniazid and acetylisoniazid in human plasma. Chromatographia 71(5–6):419–422. doi:10.1365/s10337-010-1471-7

    Article  CAS  Google Scholar 

  12. Unsalan S, Sancar M, Bekce B, Clark PM, Karagoz T, Izzettin FV, Rollas S (2005) Therapeutic monitoring of isoniazid, pyrazinamide and rifampicin in tuberculosis patients using LC. Chromatographia 61(11–12):595–598. doi:10.1365/s10337-005-0549-0

    Article  CAS  Google Scholar 

  13. Sadeg N, Pertat N, Dutertre H, Dumontet M (1996) Rapid, specific and sensitive method for isoniazid determination in serum. J Chromatogr B Biomed Appl 675(1):113–117

    Article  CAS  Google Scholar 

  14. Lacroix C, Laine G, Goulle JP, Nouveau J (1984) Determination of isoniazid and acetylisoniazid in plasma or serum by high-performance liquid chromatography. J Chromatogr 307(1):137–144

    CAS  Google Scholar 

  15. Svensson JO, Muchtar A, Ericsson O (1985) Ion-pair high-performance liquid-chromatographic determination of isoniazid and acetylisoniazid in plasma and urine—application for acetylator phenotyping. J Chromatogr 341(1):193–197

    CAS  Google Scholar 

  16. Ioannou PC (1988) A more simple, rapid and sensitive fluorimetric method for the determination of isoniazid and acetylisoniazid in serum. Application for acetylator phenotyping. Clin Chim Acta 175(2):175–181

    Article  CAS  Google Scholar 

  17. Defilippi A, Piancone G, Laia RC, Balla S, Tibaldi GP (1994) High-performance liquid-chromatography with UV detection and diod array UV conformation of isonicotinic-acid hydrazide in cattle milk. J Chromatogr B Biomed Appl 656(2):466–471

    Article  CAS  Google Scholar 

  18. Kubo H, Kinoshita T, Matsumoto K, Nishikawa T (1990) Fluorometric-determination of isoniazid and its metabolites in urine by high-performance liquid chromatography. Chromatographia 30(1–2):69–72

    Article  CAS  Google Scholar 

  19. Kohno H, Kubo H, Furukawa K, Yoshino N, Nishikawa T (1991) Fluorometric-determination of isoniazid and its metabolites in urine by high-performance liquid-chromatography using in-line derivatization. Ther Drug Monit 13(5):428–432

    Article  CAS  Google Scholar 

  20. Khuhawar MY, Zardari LA, Laghari AJ (2008) Capillary gas chromatographic determination of isoniazid in pharmaceutical preparation by pre-column derivatization with acetylacetone. Asian J Chem 20(8):5997–6006

    CAS  Google Scholar 

  21. Khuhawart MY, Zardari LA (2008) Ethyl chloroformate as a derivatizing reagent for the gas chromatographic determination of isoniazid and hydrazine in pharmaceutical preparations. Anal Sci 24(11):1493–1496

    Article  Google Scholar 

  22. Timbrell JA, Wright JM, Smith CM (1977) Determination of hydrazine metabolites of isoniazid in human urine by gas-chromatography. J Chromatogr 138(1):165–172

    Article  CAS  Google Scholar 

  23. Huang LS, Marzan F, Jayewardene AL, Lizak PS, Li XH, Aweeka FT (2009) Development and validation of a hydrophilic interaction liquid chromatography–tandem mass spectrometry method for determination of isoniazid in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 877(3):285–290. doi:10.1016/j.jchromb.2008.12.024

    Article  CAS  Google Scholar 

  24. Song SH, Jun SH, Park KU, Yoon Y, Lee JH, Kim JQ, Song J (2007) Simultaneous determination of first-line anti-tuberculosis drugs and their major metabolic ratios by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 21(7):1331–1338. doi:10.1002/rcm.2961

    Article  CAS  Google Scholar 

  25. Chen XY, Song B, Jiang HJ, Yu K, Zhong DF (2005) A liquid chromatography/tandem mass spectrometry method for the simultaneous quantification of isoniazid and ethambutol in human plasma. Rapid Commun Mass Spectrom 19(18):2591–2596. doi:10.1002/rcm.2100

    Article  CAS  Google Scholar 

  26. Elbrashy AM, Elashry SM (1992) Colorimetric and titrimetric assay of isoniazid. J Pharm Biomed Anal 10(6):421–426

    Article  CAS  Google Scholar 

  27. Alapont AG, Gimenez EA, Zamora LL, Calatayud JM (1998) Inhibition of the system luminol–H2O2–Fe(CN)(6)(3−) chemiluminescence by the Mn(II) indirect determination of isoniazid in a pharmaceutical formulation. J Biolumin Chemilumin 13(3):131–137

    Article  CAS  Google Scholar 

  28. Koupparis MA, Hadjiioannou TP (1978) Indirect potentiometric determination of hydrazine, isoniazid, sulfide and thiosulfate with a chloramine-T ion-selective electrode. Talanta 25(8):477–480

    Article  CAS  Google Scholar 

  29. Liu J, Zhou WH, You TY, Li FL, Wang EK, Dong SJ (1996) Detection of hydrazine, methylhydrazine, and isoniazid by capillary electrophoresis with a palladium modified microdisk array electrode. Anal Chem 68(19):3350–3353

    Article  CAS  Google Scholar 

  30. Wang EK, Zhou WH (1996) Determination of isoniazid and hydrazine by capillary electrophoresis with amperometric detection at a Pt-particle modified carbon fiber microelectrode. Chinese J Chem 14(2):131–137

    CAS  Google Scholar 

  31. Faria AF, de Souza MVN, Bruns RE, de Oliveira MA (2010) Simultaneous determination of first-line anti-tuberculosis drugs by capillary zone electrophoresis using direct UV detection. Talanta 82(1):333–339. doi:10.1016/j.talanta.2010.04.044

    Article  CAS  Google Scholar 

  32. Nemutlu E, Celebier M, Uyar B, Altinoz S (2007) Validation of a rapid micellar electrokinetic capillary chromatographic method for the simultaneous determination of isoniazid and pyridoxine hydrochloride in pharmaceutical formulation. J Chromatogr B Analyt Technol Biomed Life Sci 854(1–2):35–42. doi:10.1016/j.jchromb.2007.03.050

    CAS  Google Scholar 

  33. Lin CH, Kaneta T (2004) On-line sample concentration techniques in capillary electrophoresis: velocity gradient techniques and sample concentration techniques for biomolecules. Electrophoresis 25(23–24):4058–4073. doi:10.1002/elps.200406172

    Article  CAS  Google Scholar 

  34. Quirino JP, Terabe S (2000) Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping. Anal Chem 72(5):1023–1030

    Article  CAS  Google Scholar 

  35. Tsai CH, Huang HM, Lin CH (2003) Violet light emitting diode-induced fluorescence detection combined with on-line sample concentration techniques for use in capillary electrophoresis. Electrophoresis 24(17):3083–3088. doi:10.1002/elps.200305505

    Article  CAS  Google Scholar 

  36. Huang HY, Hsieh SH (2007) Analyses of tobacco alkaloids by cation-selective exhaustive injection sweeping microemulsion electrokinetic chromatography. J Chromatogr A 1164:313–319. doi:10.1016/j.chroma.2007.06.065

    Article  CAS  Google Scholar 

  37. Lin YH, Lee MR, Lee RJ, Ko WK, Wu SM (2007) Hair analysis for methamphetamine, ketamine, morphine and codeine by cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography. J Chromatogr A 1145(1–2):234–240. doi:10.1016/j.chroma.2007.01.054

    Article  CAS  Google Scholar 

  38. Lin YH, Chiang JF, Lee MR, Lee RJ, Ko WK, Wu SM (2008) Cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography for analysis of morphine and its four metabolites in human urine. Electrophoresis 29(11):2340–2347. doi:10.1002/elps.200700825

    Article  CAS  Google Scholar 

  39. Su HL, Hsieh YZ (2008) Using cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography to determine selective serotonin reuptake inhibitors. J Chromatogr A 1209(1–2):253–259. doi:10.1016/j.chroma.2008.08.087

    Article  CAS  Google Scholar 

  40. Fang C, Liu JT, Lin CH (2002) Optimization of the separation of lysergic acid diethylamide in urine by a sweeping technique using micellar electrokinetic chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 775(1):37–47

    Article  CAS  Google Scholar 

  41. Quirino JP, Iwai Y, Otsuka K, Terabe S (2000) Determination of environmentally relevant aromatic amines in the ppt levels by cation selective exhaustive injection–sweeping–micellar electrokinetic chromatography. Electrophoresis 21(14):2899–2903

    Article  CAS  Google Scholar 

  42. Isoo K, Terabe S (2003) Analysis of metal ions by sweeping via dynamic complexation and cation-selective exhaustive injection in capillary electrophoresis. Anal Chem 75(24):6789–6798. doi:10.1021/ac034677r

    Article  CAS  Google Scholar 

  43. Li XG, Hu JW, Han HY (2011) Determination of cypromazine and its metabolite melamine in milk by cation-selective exhaustive injection and sweeping-capillary micellar electrokinetic chromatography. J Sep Sci 34(3):323–330. doi:10.1002/jssc.201000559

    Article  Google Scholar 

  44. Yang YY, Nie HG, Li CC, Bai Y, Li N, Liao J, Liu HW (2010) On-line concentration and determination of tobacco-specific N-nitrosamines by cation-selective exhaustive injection–sweeping–micellar electrokinetic chromatography. Talanta 82(5):1797–1801. doi:10.1016/j.talanta.2010.07.075

    Article  CAS  Google Scholar 

  45. Shihabi ZK (2005) Organic solvent high-field amplified stacking for basic compounds in capillary electrophoresis. J Chromatogr A 1066(1–2):205–210. doi:10.1016/j.chroma.2005.01.021

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Science Council of Taiwan (NSC 99-2320-B-002-013-MY3). We also appreciate Mr. Lee, Su-Lin and Mr. Hsieh, Po-Hung for providing internal standard to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hua Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, IL., Liu, HY., Kuo, PH. et al. Quantitative determination of isoniazid in biological samples by cation-selective exhaustive injection–sweeping–micellar electrokinetic chromatography. Anal Bioanal Chem 401, 2205–2214 (2011). https://doi.org/10.1007/s00216-011-5285-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5285-8

Keywords

Navigation