Skip to main content

Electrical Characterization of Semiconductor Materials and Devices

  • Reference work entry
Springer Handbook of Electronic and Photonic Materials

Part of the book series: Springer Handbooks ((SHB))

Abstract

Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials – semiconductors, conductors and dielectrics – which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input–output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current–voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscopy

BJT:

bipolar junction transistor

CCD:

charge-coupled device

CKR:

cross Kelvin resistor

CMOS:

complementary metal-oxide-semiconductor

CP:

charge pumping

CR-DLTS:

computed radiography deep level transient spectroscopy

CR:

computed radiography

DC:

direct current

DLTS:

deep level transient spectroscopy

DUT:

device under test

FET:

field effect transistor

HF:

high-frequency

JFET:

junction field-effect transistors

KCR:

Kelvin contact resistance

LDD:

lightly doped drain

LF:

low-frequency

MESFET:

metal-semiconductor field-effect transistor

MOS:

metal/oxide/semiconductor

MOSFET:

metal/oxide/semiconductor field effect transistor

MS:

metal–semiconductor

PE:

polysilicon emitter

QHE:

quantum Hall effect

RTS:

random telegraph signal

SOI:

silicon-on-insulator

SSRM:

scanning spreading resistance microscopy

TLM:

transmission line measurement

References

  1. M.J. Deen: Proc. Sixth Symp. Silicon Nitride and Silicon Dioxide Thin Insulating Films, ed. by R.E. Sah, M.J. Deen, D. Landheer, K.B. Sundaram, W.D. Brown, D. Misra (Electrochem. Soc. Paris, Paris 2003) pp. 3-21

    Google Scholar 

  2. P. Rai-Choudhury, J. Benton, D. Schroder (Eds.): Proc. Symp. Diagnostic Techniques Semiconductor Materials and Devices, Proc. Vol. 97-12 (The Electrochemical Society Press, New Jersey 1997)

    Google Scholar 

  3. D. Schroder: Semiconductor Material and Device Characterization, 2nd edn. (Wiley, New York 1998)

    Google Scholar 

  4. W. Runyan, T Shaffner: Semiconductor Measurements and Instrumentation, 2nd edn. (McGraw Hill, New York 1997)

    Google Scholar 

  5. ITRS: International Technology Roadmap for Semiconductors 2001 version, URL: http://public.itrs.net/Files/2001ITRS/Home.htm (2001)

    Google Scholar 

  6. R. Pierret: Advance Semiconductor Fundamentals, Modular Ser. Solid State Dev. 6 (Addison-Wesley, Reading 1987)

    Google Scholar 

  7. W. Sawyer: Proc. 1998 Int. Conf. on Ion Implantation Technology, (IEEE Press, Piscataway, 1998)

    Google Scholar 

  8. L. J. van der Pauw: Philos. Res. Rev. 13, 1–9 (1958)

    Google Scholar 

  9. M. Newsam, A. Walton, M. Fallon: Proc. 1996 Int. Conf. Microelectronic Test Structures (1996) pp. 247-252

    Google Scholar 

  10. T. Noda, D. Lee, H. Shim, M. Sakuraba, T. Matsuura, J. Murota: Thin Solid Films 380, 57–60 (2000)

    Article  CAS  Google Scholar 

  11. P. De Wolf, R. Stephenson, S. Biesemans, Ph. Jansen, G. Badenes, K. De Meyer, W. Vandervorst: Int. Electron Dev. Meeting (IEDM) Tech. Dig. (1998) pp. 559-562

    Google Scholar 

  12. J.H. Orchard-Webb, R. Coultier: Proc. IEEE Int. Conf. Microelectron. Test Structures, (1989) pp. 169-173

    Google Scholar 

  13. J. D. Plummer, P. B. Griffin: Proc. IEEE 89(3) (2001) 240–258

    Google Scholar 

  14. S. Sze: Physics of Semiconductor Devices, 2nd edn. (Wiley, New York 1981)

    Google Scholar 

  15. W. M. Loh, S. E. Swirhun, T. A. Schreyer, R. M. Swanson, K. C. Saraswat: IEEE Trans. Electron Dev. 34(3), 512–524 (1987)

    Article  Google Scholar 

  16. S. Zhang, M. Östling, H. Norström, T. Arnborg: IEEE Trans. Electron Dev. 41(8), 1414–1420 (1994)

    Article  CAS  Google Scholar 

  17. A. S. Holland, G. K. Reeves: Microelectron. Reliab. 40, 965–971 (2000)

    Article  Google Scholar 

  18. Y. Qiu: Introduction to the Quantum Hall Effect, URL: http://www.pha.jhu.edu/∼qiuym/qhe (1997)

    Google Scholar 

  19. E. H. Hall: Am. J. Math. 2, 287–292 (1879)

    Article  Google Scholar 

  20. P. Elias, S. Hasenohrl, J. Fedor, V. Cambel: Sensors Actuat. A 101, 150–155 (2002)

    Article  Google Scholar 

  21. A. Vandooren, S. Cristoloveanu, D. Flandre, J. P. Colinge: Solid-State Electron. 45, 1793–1798 (2001)

    Article  CAS  Google Scholar 

  22. D. T. Lu, H. Ryssel: Curr. Appl. Phys. 1(3-5), 389–391 (2001)

    Article  Google Scholar 

  23. R. L. Petriz: Phys. Rev. 110, 1254–1262 (1958)

    Article  Google Scholar 

  24. P. Terziyska, C. Blanc, J. Pernot, H. Peyre, S. Contreras, G. Bastide, J. L. Robert, J. Camassel, E. Morvan, C. Dua, C. C. Brylinski: Phys. Status Solidi A 195(1), 243–247 (2003)

    Article  CAS  Google Scholar 

  25. G. Rutsch, R. P. Devaty, D. W. Langer, L. B. Rowland, W. J. Choyke: Mat. Sci. Forum 264-268, 517–520 (1998)

    Article  CAS  Google Scholar 

  26. P. Blood, J. W. Orton: The Electrical Characterization of Semiconductor: Majority Carriers and Electron States, (Techniques of Physics, Vol. 14) (Academic, New York 1992)

    Google Scholar 

  27. Q. Lu, M. R. Sardela Jr., T. R. Bramblett, J. E. Greene: J. Appl. Phys. 80, 4458–4466 (1996)

    Article  CAS  Google Scholar 

  28. S. Wagner, C. Berglund: Rev. Sci. Instrum. 43(12), 1775–1777 (1972)

    Article  CAS  Google Scholar 

  29. E. H. Nicollian, J. R. Brews: MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York 1982)

    Google Scholar 

  30. Model 82-DOS Simultaneous C-V Instruction Manual (Keithley Instruments, Cleveland 1988)

    Google Scholar 

  31. W. Beadle, J. Tsai, R. Plummer: Quick Reference Manual for Silicon Integrated Circuit Technology (Wiley, New York 1985)

    Google Scholar 

  32. J. Brews: J. Appl. Phys., 44(7), 3228–3231 (1973)

    Google Scholar 

  33. M. Kuhn: Solid-State Electron. 13, 873–885 (1970)

    Article  Google Scholar 

  34. C. N. Berglund: IEEE Trans. Electron Dev., 13(10), 701–705 (1966)

    Google Scholar 

  35. S. Witczak, J. Schuele, M. Gaitan: Solid-State Electron. 35, 345 (1992)

    Article  CAS  Google Scholar 

  36. M. J. Deen: Electron. Lett. 28(3), 1195–1997 (1992)

    Article  CAS  Google Scholar 

  37. Z. P. Zuo, M. J. Deen, J. Wang: Proc. Canadian Conference on Electrical and Computer Engineering (IEEE Press, Piscataway, 1989) pp. 1038-1041

    Google Scholar 

  38. A. Raychaudhuri, M. J. Deen, M. I. H. King, W. Kwan: IEEE Trans. Electron Dev. 43(7), 1114–1122 (1996)

    Article  CAS  Google Scholar 

  39. W. S. Kwan, A. Raychaudhuri, M. J. Deen: Can. J. Phys. 74, S167–S171 (1996)

    Article  CAS  Google Scholar 

  40. T. Matsuda, R. Takezawa, K. Arakawa, M. Yasuda, T. Ohzone, T. Kameda, E. Kameda: Proc. International Conference on Microelectronic Test Structures (ICMTS 2001) (IEEE Press, Piscataway, 2001) pp. 65-70

    Google Scholar 

  41. A. Raychaudhuri, M. J. Deen, M. I. H. King, W. Kwan: IEEE Trans. Electron Dev. 43(1), 110–115 (1996)

    Article  Google Scholar 

  42. G. Groeseneneken, H. Maes, N. Beltram, R. DeKeersmaker: IEEE Trans. Electron Dev. 31, 42–53 (1984)

    Article  Google Scholar 

  43. X. Li, M. J. Deen: Solid-State Electron. 35(8), 1059–1063 (1992)

    Article  Google Scholar 

  44. X. M. Li, M. J. Deen: IEEE International Electron Devices Meeting (IEDM) (IEEE Press, Piscataway, 1990) pp. 85-87

    Google Scholar 

  45. D. S. Ang, C. H. Ling: IEEE Electron Dev. Lett. 19(1), 23–25 (1998)

    Article  CAS  Google Scholar 

  46. H. Uchida, K. Fukuda, H. Tanaka, N. Hirashita: International Electron Devices Meeting (1995) pp. 41-44

    Google Scholar 

  47. N. S. Saks, M. G. Ancona: IEEE Trans. Electron Dev. 37(4), 1057–1063 (1990)

    Article  CAS  Google Scholar 

  48. S. Mahapatra, C. D. Parikh, V. R. Rao, C. R. Viswanathan, J. Vasi: IEEE Trans. Electron Dev. 47(4), 789–796 (2000)

    Article  CAS  Google Scholar 

  49. Y.-L. Chu, D.-W. Lin, C.-Y. Wu: IEEE Trans. Electron Dev. 47(2), 348–353 (2000)

    Article  CAS  Google Scholar 

  50. J. S. Bruglers, P. G. Jespers: IEEE Trans. Electron Dev. 16, 297 (1969)

    Article  Google Scholar 

  51. D. Bauza: J. Appl. Phys. 94(5), 3239–3248 (2003)

    Article  CAS  Google Scholar 

  52. L. M. Head, B. Le, T. M. Chen, L. Swiatkowski: Proceedings 30th Annual International Reliability Physics Symposium (1992) pp. 228-231

    Google Scholar 

  53. S. An, M. J. Deen: IEEE Trans. Electron Dev. 47(3), 537–543 (2000)

    Article  CAS  Google Scholar 

  54. S. An, M. J. Deen, A. S. Vetter, W. R. Clark, J.-P. Noel, F. R. Shepherd: IEEE J. Quantum Elect. 35(8), 1196–1202 (1999)

    Article  CAS  Google Scholar 

  55. M. J. Deen, C. Quon: 7th Biennial European Conference - Insulating Films on Semiconductors (INFOS 91), ed. by W. Eccleston, M. Uren (IOP Publishing Ltd., Liverpool U.K., 1991) pp. 295-298

    Google Scholar 

  56. Z. Celik-Butler: IEE P.-Circ. Dev. Syst. 149(1), 23–32 (2002)

    Article  Google Scholar 

  57. J. Chen, A. Lee, P. Fang, R. Solomon, T. Chan, P. Ko, C. Hu: Proceedings IEEE International SOI Conference (1991) pp. 100-101

    Google Scholar 

  58. J. Sikula: Proceedings of the 17th International Conference on Noise in Physical Systems and 1/f Fluctuations (ICNF 2003), (CNRL,Prague, 2003)

    Google Scholar 

  59. M. J. Deen, Z. Celik-Butler, M. E. Levinhstein (Eds.): SPIE Proc. Noise Dev. Circ. 5113 (2003)

    Google Scholar 

  60. C. R. Doering, L. B. Kish, M. Shlesinger: Proceedings of the First International Conference on Unsolved Problems of Noise, (World Scientific Publishing, Singapore, 1997)

    Google Scholar 

  61. D. Abbot, L. B. Kish: Proceedings of the Second International Conference on Unsolved Problems of Noise and Fluctuations, (American Institute of Physics Conference Proceedings: 511, Melville, New York 2000)

    Google Scholar 

  62. S. M. Bezrukov: Proceedings of the Third International Conference on Unsolved Problems of Noise and Fluctuations, Washington, DC (American Institute of Physics Conference Proceedings: 665, Melville, New York 2000)

    Google Scholar 

  63. M. J. Deen, S. L. Rumyantsev, M. Schroter: J. Appl. Phys. 85(2), 1192–1195 (1999)

    Article  CAS  Google Scholar 

  64. M. Sanden, O. Marinov, M. Jamal Deen, M. Ostling: IEEE Electron Dev. Lett., 22(5), 242–244 (2001)

    Google Scholar 

  65. M. Sanden, O. Marinov, M. Jamal Deen, M. Ostling: IEEE Trans. Electron Dev. 49(3), 514–520 (2002)

    Article  Google Scholar 

  66. M. J. Deen, J. I. Ilowski, P. Yang: J. Appl. Phys. 77(12), 6278–6288 (1995)

    Article  CAS  Google Scholar 

  67. M. J. Deen, E. Simoen: IEE P.-Circ. Dev. Syst. 49(1), 40–50 (2002)

    Article  Google Scholar 

  68. M. J. Deen: IEE Proceedings - Circuits, Devices and Systems – Special Issue on Noise in Devices and Circuits 151(2) (2004)

    Google Scholar 

  69. M. J. Deen, O. Marinov: IEEE Trans. Electron Dev. 49(3), 409–414 (2002)

    Article  Google Scholar 

  70. O. Marinov, M. J. Deen, J. Yu, G. Vamvounis, S. Holdcroft, W. Woods: Instability of the Noise Level in Polymer Field Effect Transistors with Non-Stationary Electrical Characteristics, Third International Conference on Unsolved Problems of Noise and Fluctuations (UPON 02), Washington, DC (AIP Press, Melville, 2002)

    Google Scholar 

  71. M. Marin, M. J. Deen, M. de Murcia, P. Llinares, J. C. Vildeuil: IEE P.-Circ. Dev. Syst. 151(2), 95–101 (2004)

    Article  Google Scholar 

  72. A. Chandrakasan: Proceedings European Solid-State Circuits Conference (ESSCIRC 2002), (AIP Press, Melville, 2002) pp. 47-54

    Google Scholar 

  73. R. Brederlow, W. Weber, D. Schmitt-Landsiedel, R. Thewes: IEDM Technical Digest (1999) pp. 159-162

    Google Scholar 

  74. L. Chaar, A. van Rheenen: IEEE Trans. Instrum. Meas. 43, 658–660 (1994)

    Article  Google Scholar 

  75. C.-Y. Chen, C.-H. Kuan: IEEE Trans. Instrum. Meas. 49, 77–82 (2000)

    Article  Google Scholar 

  76. C. Ciofi, F. Crupi, C. Pace, G. Scandurra: IEEE Trans. Instrum. Meas. 52, 1533–1536 (2003)

    Article  Google Scholar 

  77. P. Kolev, M. J. Deen: Development and Applications of a New DLTS Method and New Averaging Techniques. In: Adv. Imag. Electr. Phys., ed. by P. Hawkes (Academic, New York 1999)

    Google Scholar 

  78. P. McLarty: Deep Level Transient Spectroscopy (DLTS). In: Characterization Methods for Submicron MOSFETs, ed. by H. Haddara (Kluwer, Boston 1996) pp. 109– 126

    Google Scholar 

  79. P. V. Kolev, M. J. Deen: J. Appl. Phys. 83(2), 820–825 (1998)

    Article  CAS  Google Scholar 

  80. P. Kolev, M. J. Deen, T. Hardy, R. Murowinski: J. Electrochem. Soc. 145(9), 3258–3264 (1998)

    Article  CAS  Google Scholar 

  81. P. Kolev, M. J. Deen, J. Kierstead, M. Citterio: IEEE Trans. Electron Dev. 46(1), 204–213 (1999)

    Article  CAS  Google Scholar 

  82. P. Kolev, M. J. Deen: Proceedings of the Fourth Symposium on Low Temperature Electronics and High Temperature Superconductivity, 97-2, ed. by C. Claeys, S. I. Raider, M. J. Deen, W. D. Brown, R. K. Kirschman (The Electrochemical Society Press, New Jersey, 1997) pp. 147-158

    Google Scholar 

  83. P. V. Kolev, M. J. Deen, N. Alberding: Rev. Sci. Instrum. 69(6), 2464–2474 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Deen Prof. or Fabien Pascal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Deen, M., Pascal, F. (2006). Electrical Characterization of Semiconductor Materials and Devices. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29185-7_20

Download citation

Publish with us

Policies and ethics