Skip to main content

Genome Editing of Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes to Model Genetic Ocular Diseases

  • Protocol
  • First Online:
Induced Pluripotent Stem Cells and Human Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2549))

Abstract

Genome editing with the use of CRISPR/Cas9 ribonucleoprotein complexes of induced pluripotent stem cells can be used to model many diseases. The combination of stem cells and gene editing technologies is a valuable tool to study ocular disorders, as many have been identified to be caused by specific genetic mutations. This protocol provides experimentally derived guidelines for genome editing of human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 ribonucleoprotein complexes to generate iPSCs harboring single nucleotide variants from ocular disorders. Edited iPSC can be further differentiated into retinal cells in order to study disease mechanisms as well as screen potential therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw PX et al (2016) Oxidative stress, innate immunity, and age-related macular degeneration. AIMS Mol Sci 3(2):196–221

    Article  CAS  Google Scholar 

  2. Nita M et al (2014) Age-related macular degeneration and changes in the extracellular matrix. Med Sci Monit 20:1003–1016

    Article  CAS  Google Scholar 

  3. Sundaresan P et al (2012) Polymorphisms in ARMS2/HTRA1 and complement genes and age-related macular degeneration in India: findings from the INDEYE study. Invest Ophthalmol Vis Sci 53(12):7492–7497

    Article  CAS  Google Scholar 

  4. Chang B (2013) Mouse models for studies of retinal degeneration and diseases. Methods Mol Biol 935:27–39

    Article  CAS  Google Scholar 

  5. Krebs MP et al (2017) Mouse models of human ocular disease for translational research. PLoS One 12(8):e0183837

    Article  Google Scholar 

  6. Iwata T, Tomarev S (2008) Animal models for eye diseases and therapeutics. In: Conn PM (ed) Sourcebook of models for biomedical research. Humana Press, Totowa, NJ, pp 279–287

    Chapter  Google Scholar 

  7. Eintracht J, Toms M, Moosajee M (2020) The use of induced pluripotent stem cells as a model for developmental eye disorders. Front Cell Neurosci 14:265

    Article  CAS  Google Scholar 

  8. Chen FK et al (2014) iPS cells for modelling and treatment of retinal diseases. J Clin Med 3(4):1511–1541

    Article  Google Scholar 

  9. Brydon EM et al (2019) AAV-mediated gene augmentation therapy restores critical functions in mutant PRPF31 iPSC-derived RPE cells. Mol Ther 15:392–402

    CAS  Google Scholar 

  10. Nguyen HV, Li Y, Tsang SH (2015) Patient-specific iPSC-derived RPE for modeling of retinal diseases. J Clin Med 4(4):567–578

    Article  CAS  Google Scholar 

  11. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  Google Scholar 

  12. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292

    Article  CAS  Google Scholar 

  13. Chu VT et al (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5):543–548

    Article  CAS  Google Scholar 

  14. Maruyama T et al (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5):538–542

    Article  CAS  Google Scholar 

  15. Hoshijima K et al (2019) Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish. Dev Cell 51(5):645–657.e4

    Article  CAS  Google Scholar 

  16. Kim S et al (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24(6):1012–1019

    Article  CAS  Google Scholar 

  17. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  Google Scholar 

  18. Fernandez-Godino R, Bujakowska KM, Pierce EA (2018) Changes in extracellular matrix cause RPE cells to make basal deposits and activate the alternative complement pathway. Hum Mol Genet 27(1):147–159

    Article  CAS  Google Scholar 

  19. Leach LL et al (2016) Induced pluripotent stem cell-derived retinal pigmented epithelium: a comparative study between cell lines and differentiation methods. J Ocul Pharmacol Ther 32(5):317–330

    Article  CAS  Google Scholar 

  20. Foltz LP, Clegg DO (2017) Rapid, directed differentiation of retinal pigment epithelial cells from human embryonic or induced pluripotent stem cells. J Vis Exp 128

    Google Scholar 

  21. Yoshimi K et al (2016) ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 7:10431

    Article  CAS  Google Scholar 

  22. Miura H et al (2015) CRISPR/Cas9-based generation of knockdown mice by intronic insertion of artificial microRNA using longer single-stranded DNA. Sci Rep 5:12799

    Article  CAS  Google Scholar 

  23. Srivastava M et al (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151(7):1474–1487

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Fernandez-Godino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Getachew, H., Chinchilla, B., Fernandez-Godino, R. (2021). Genome Editing of Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes to Model Genetic Ocular Diseases. In: Turksen, K. (eds) Induced Pluripotent Stem Cells and Human Disease. Methods in Molecular Biology, vol 2549. Humana, New York, NY. https://doi.org/10.1007/7651_2021_409

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_409

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2584-2

  • Online ISBN: 978-1-0716-2585-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics