Skip to main content
Log in

Dosimetric effects of endorectal balloons on intensity-modulated radiation therapy plans for prostate cancer

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We used an endorectal balloon (ERB) for prostate immobilization during intensity-modulated radiotherapy (IMRT) for prostate cancer treatment. To investigate the dosimetric effects of ERB-filling materials, we changed the ERB Hounsfield unit (HU) from 0 to 1000 HU in 200-HU intervals to simulate the various ERB fillings; 0 HU simulated a water-filled ERB, and 1000 HU simulated the densest material-filled ERB. Dosimetric data (coverage, homogeneity, conformity, maximal dose, and typical volume dose) for the tumor and the organs at risk (OARs) were evaluated in prostate IMRT treatment plans with 6-MV and 15-MV beams. The tumor coverage appeared to differ by approximately 1%, except for the clinical target volume (CTV) V100% and the planning target volume (PTV) V100%. The largest difference for the various ERB fillings was observed in the PTV V100%. In spite of increasing HU, the prostate IMRT plans at both energies had relatively low dosimetric effects on the PTV and the CTV. However, the maximal and the typical volume doses (D25%, D30%, and D50%) to the rectal wall and the bladder increased with increasing HU. For an air-filled ERB, the maximal doses to the rectal wall and the monitor units were lower than the corresponding values for the water-filled and the densest material-filled ERBs. An air-filled ERB spared the rectal wall because of its dosimetric effect. Thus, we conclude that the use of an air-filled ERB provides a dosimetric benefit to the rectal wall without a loss of target coverage and is an effective option for prostate IMRT treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Nutting, D. J. Convery, V. P. Cosgrove, C. Rowbottom, A. R. Padhani, S. Webb and D. P. Dearnaley, Int. J. Radiat. Oncol. Biol. Phys. 48, 649 (2000).

    Article  Google Scholar 

  2. A. A. Martinez, D. Yan, D. Lockman, D. Brabbins, K. Kota, M. Sharpe, D. A. Jaffray, F. Vicini and J. Wong, Int. J. Radiat. Oncol. Biol. Phys. 50, 1226 (2001).

    Article  Google Scholar 

  3. A. Pollack, G. K. Zagars, G. Starkschall, J. A. Antolak, J. Lee, E. Huang, A. C. Eschenbach, D. A kuban and I. Rosen, Int. J. Radiat. Oncol. Biol. Phys. 53, 1097 (2002).

    Article  Google Scholar 

  4. M. J. Zelefsky, Z. Fuks, M. Hunt, Y. Yamada, C. Marion, C. C. Ling, H. Amols, E. S. Venkatraman and S. A. Leibel, Int. J. Radiat. Oncol. Biol. Phys. 53, 1111 (2002).

    Article  Google Scholar 

  5. J. A. Purdy, Int. J. Radiat. Oncol. Biol. Phys. 35, 845 (1996).

    Article  Google Scholar 

  6. K. L. Lam, R. K. Ten HaKen, D. L. McShan and A. F. Thornton, Med. Phys. 20, 1145 (1993).

    Article  Google Scholar 

  7. S. Schild, H. Casale and L. Bellefontaine, Med. Dosim. 18, 13 (1993).

    Google Scholar 

  8. J. C. Roeske, J. D. Forman, C. F. Mesina, T. He, C. A. Pelizzari, E. Fontenla, S. Vuayakumar and G. T. Chen, Int. J. Radiat. Oncol. Biol. Phys. 33, 1321 (1995).

    Article  Google Scholar 

  9. J. M. Crook, Y. Raymond, D. Salhani, H. Yang and B. Esche, Radiother. Oncol. 37, 35 (1995).

    Article  Google Scholar 

  10. E. Melian, G. S. Mageras, Z. Fuks, S. A. Leibel, A. Niehaus, H. Lorant, M. Zelefsky, B. Baldwin and G. J. Kutcher, Int. J. Radiat. Biol. Phys. 38, 73 (1997).

    Article  Google Scholar 

  11. C. J. Beard, P. Kijewski, M. Bussiere, R. Gelman, D. Gladstone, K. Shaffer, M. Plunkett, P. Costello and C. N. Coleman, Int. J. Radiat. Oncol. Biol. Phys. 34, 451 (1996).

    Article  Google Scholar 

  12. J. A. Antolak, I. I. Rosen, C. H. Childress, G. K. Zagars and A. Pollack, Int. J. Radiat. Oncol. Biol. Phys. 42, 661 (1998).

    Article  Google Scholar 

  13. J. E. McGary and W. Grant, J. Appl. Clin. Med. Phys. 1, 138 (2000).

    Article  Google Scholar 

  14. B. S. Teh, W. Y. Mai, B. M. Uhl, M. E. Auqspurger, W. H. Grant, H. H. Lu, S. Y. Woo, L. S. Carpenter, J. K. Chiu and E. B. Butler, Int. J. Radiat. Oncol. Biol. Phys. 49, 705 (2001).

    Article  Google Scholar 

  15. A. V. D’Amico, J. Manola, M. Loffredo, L. Lopes, K. Nissen, D. A. O’Farrell, Leah Gordon, C. M. Tempany and R. A. Cormack, Int. J. Radiat. Oncol. Biol. Phys. 51, 1431 (2001).

    Article  Google Scholar 

  16. J. E. McGary, B. S. Teh, E. B. Butler and W. Grant III, J. Appl. Clin. Med. Phys. 3, 6 (2002).

    Article  Google Scholar 

  17. S. Wachter, N. Gerstner, D. Dorner, G. Goldner, A. Colotto, A. Wambersie and R. Potter, Int. J. Radiat. Oncol. Biol. Phys. 52, 91 (2002).

    Article  Google Scholar 

  18. R. J. Smeenk, B. S. Teh, E. B. Butler, E. N. Lin and J. H. Kaanders, Radiother. Oncol. 95, 277 (2010).

    Article  Google Scholar 

  19. S. Both, K. K. Wang, J. P. Plastaras, C. Deville, V. Bar Ad, Z. Tochner and N. Vapiwala, Int. J. Radiat. Oncol. Biol. Phys. 81, 1302 (2011).

    Article  Google Scholar 

  20. C. Vargas, A. I. Saito, W. C. Hsi, D. Indelicato, A. Falchook, Q. Zengm, K. Oliver, S. Keole and J. Dempsey, Am. J. Clin. Oncol. 33, 11 (2010).

    Article  Google Scholar 

  21. J. H. Cho, C. Lee, D. R. Kang, J. Kim, S. Lee, C. O. Suh, J. Seong, Y. G. Suh, I. Lee and G. E. Kim, J. Korean Med. Sci. 24, 894 (2009)

    Article  Google Scholar 

  22. Y. Levy, A. Paz, R. B. Yosef, B. W. Corn, B. Vaisman, S. Shuhat, A. J. Domb and J. Biomed. Mater. Reas. B. Appl. Biomater. 91, 855 (2009).

    Article  Google Scholar 

  23. B. S. Teh, L. Dong, J. E. McGary, W. Mai, W. Grant III and E. B. Butler, Med. Dosm. 30, 25 (2005).

    Article  Google Scholar 

  24. J. E. McGary, B. S. Teh, E. B. Butler and W. Grant, J. Appl.Clin.Med. Phys. 3, 6 (2002).

    Article  Google Scholar 

  25. M. Yoon, S. Y. Park, D. Shin, S. B. Lee, H. R. Pyo, D. Y. Kim, and K. H. Cho, J. Appl. Clin. Med. Phys. 8, 9 (2007).

    Google Scholar 

  26. S. Senthi, S. S. Gill, A. Haworth, T. Kron, J. Cramb, A. Rolfo, J. Thomas, G. M. Duchesne, C. H. Hamilton, D. L. Joon, P. Bowden and F. Foroudi, Int. J. Radiat. Biol. Phys. 82, 998 (2012).

    Article  Google Scholar 

  27. L. H. Leung, M. W. Kan, A. C. Cheng, W. K. Wong and C. C. Yau, Ratiother. Oncol. 85, 407 (2007).

    Article  Google Scholar 

  28. B. S. Teh, S. Y. Woo, W. Y. Mai, J. E. Mcgary, L. S. Carpenter, H. H. Lu, J. K. Chiu, M. T. Vlachaki, W. H. Grant III and E. B. Butler, Med. Dosm. 27, 105 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Beom Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JS., Chung, JB., Kim, IA. et al. Dosimetric effects of endorectal balloons on intensity-modulated radiation therapy plans for prostate cancer. Journal of the Korean Physical Society 63, 1637–1643 (2013). https://doi.org/10.3938/jkps.63.1637

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1637

Keywords

Navigation