Skip to main content
Log in

Quantification of breast composition by using a dual-energy technique with a photon-counting detector: Monte Carlo simulation studies

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Photon-counting detectors with energy-discrimination capabilities are able to reduce radiation dose and suppress noise compared with conventional detectors for X-ray imaging. These detectors are suitable for spectral X-ray imaging because they can measure the energy of each photon and provide spectral information. One potential application of photon-counting detectors with energy-discrimination capabilities is the quantification of breast composition by using dual-energy techniques. In this study, we implemented quantitative breast imaging with dual-energy techniques by using Monte Carlo simulations. An X-ray imaging system was simulated with a photon-counting detector based on cadmium zinc telluride and a micro-focus X-ray tube. In order to decompose three materials with two spectral measurements, we applied an additional constraint that the sum of the volumes of each material be equivalent to the volume of the mixture. Inverse fitting functions with the least-squares estimation were used to obtain fitting coefficients and calculate volume fractions for each material. The results showed that the degree of decomposition for the composition included in the mixtures varied with the type of composition and the inverse fitting function. High-order fitting functions increased the quantitative accuracy, but the uncertainty of the decomposed images was increased for high-order fitting functions. This study demonstrates that it is possible to quantify breast composition by using dual-energy techniques and photon-counting detectors without an additional exposure and that the decomposed images should be evaluated by considering both their uncertainties and quantitative accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Takahashi and S. Watanabe, IEEE Trans. Nucl. Sci. 48, 950 (2001).

    Article  ADS  Google Scholar 

  2. K. Spartiotis, A. Leppanen, T. Pantsar, J. Pyyhtia, P. Laukka, K. Muukkonen, O. Mannisto, J. Kinnari and T. Schulman, Nucl. Instrum. Methods A 550, 267 (2005).

    Article  ADS  Google Scholar 

  3. M. Locker, P. Fischer, S. Krimmel, H. Kruger, M. Lindner, K. Nakazawa, T. Takahashi and N. Wermes, IEEE Trans. Nucl. Sci. 51, 1717 (2004).

    Article  ADS  Google Scholar 

  4. P. M. Shikhaliev, Phys. Med. Biol. 53, 1475 (2008).

    Article  Google Scholar 

  5. X. Wang, D. Meier, B. M. Sundal, P. Oya, G. E. Maehlum, D. J. Wagenaar, B. E. Patt, B. M. W. Tsui and E. Frey, IEEE Nuclear Science Symposium Conference Record (Orlando, 2009), 3453.

    Google Scholar 

  6. T. G. Schmidt, Med. Phys. 36, 3018 (2009).

    Article  Google Scholar 

  7. S. W. Lee, Y. N. Choi, H. M. Cho, Y. J. Lee, H. J. Ryu and H. J. Kim, Phys. Med. Biol. 57, 4931 (2012).

    Article  Google Scholar 

  8. N. F. Boyd et al, N. Engl. J. Med. 356, 227 (2007).

    Article  Google Scholar 

  9. J. A. Shepherd, K. M. Kerlikowske, R. Smith-Bindman, H. K. Genant and S. R. Cummings, Radiology 223, 554 (2002).

    Article  Google Scholar 

  10. C. Bryne, J. Natl. Cancer Inst. 89, (1997).

  11. A. D. Laidevant, S. Malkov, C. I. Flowers, K. Kerlikowske and J. A. Shepherd, Med. Phys. 37, 164 (2010).

    Article  Google Scholar 

  12. L. M. Warren, A. Mackenzie, D. R. Dance and K. C. Young, Phys. Med. Biol. 58, N103 (2013).

    Article  Google Scholar 

  13. S. C. Kappadath and C. C. Shaw, Phys. Med. Biol. 53, 5421 (2008).

    Article  Google Scholar 

  14. S. C. Kappadath and C. C. Shaw, Med. Phys. 32, 3395 (2005).

    Article  Google Scholar 

  15. A. N. Primak, J. C. R. Giraldo, C. D. Eusemann, B. Schmidt, B. Kantor, J. G. Fletcher and C. H. McCollough, AJR Am. J. Roentgenol. 195, 1164 (2010).

    Article  Google Scholar 

  16. M. Qu, J. C. R. Giraldo, S. Leng, J. C. Williams, T. J. Vrtiska, J. C. Lieske and C. H. McCollough, AJR 196, 1279 (2011).

    Article  Google Scholar 

  17. Y. N. Choi, H. M. Cho, S. W. Lee, H. J. Ryu, Y. J. Lee and H. J. Kim, J. Korean Phys. Soc. 59, 161 (2011).

    Article  Google Scholar 

  18. G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans and F. Verhaegen, Phys. Med. Biol. 54, N433 (2009).

    Article  ADS  Google Scholar 

  19. G. F. Knoll, Radiation Detection and Measurement (Wiley, New York, 2010).

    Google Scholar 

  20. X. Wang, D. Meier, S. Mikkelsen, G. E. Maehlum, D. J. Wagenaar, B. M. W. Tsui, B. E. Patt and E. C. Frey, Phys. Med. Biol. 56, 2791 (2011).

    Article  Google Scholar 

  21. X. Wang, D. Meier, K. Taguchi, D. J. Wagenaar, B. E. Patt and E. C. Frey, Med. Phys. 38, 1534 (2011).

    Article  Google Scholar 

  22. D. Lazaro et al., Phys. Med. Biol. 49, 271 (2004).

    Article  Google Scholar 

  23. K. Taguchi, E. C. Frey, X. Wang, J. S. Iwanczyk and W. C. Barber, Med. Phys. 37, 3957 (2010).

    Article  Google Scholar 

  24. S. Jan et al., Phys. Med. Biol. 56, 881 (2011).

    Article  Google Scholar 

  25. L. Grevillot, D. Bertrand, F. Dessy, N. Freud, and D. Sarrut, Phys. Med. Biol. 56, 5203 (2011).

    Article  Google Scholar 

  26. J. M. Boone, A. L. C. Kwan, J. A. Seibert, N. Shah, K. K. Lindfors and T. R. Nelson, Med. Phys. 32, 3767 (2005).

    Article  Google Scholar 

  27. A. Malusek, M Karlsson, M. Magnusson and G. A. Carlsson, Phys. Med. Biol. 58, 771 (2013).

    Article  Google Scholar 

  28. M. R. Lemacks, S. C. Kappadath, C. C. Shaw, X. Liu and G. J. Whitman, Med. Phys. 29, 1739 (2002).

    Article  Google Scholar 

  29. H. N. Cardinal and A. Fenster, Med. Phys. 17, 327 (1990).

    Article  Google Scholar 

  30. A. A. Giordano and F. M. Hdu, Least Square Estimation with Applications to Digital Signal Processing (Wiley, New York, 1985).

    Google Scholar 

  31. L. Justin and S. Molloi, Med. Phys. 35, 5411 (2008).

    Article  Google Scholar 

  32. J. M. Boone, Radiology 213, 23 (1999).

    Article  Google Scholar 

  33. ICRU Report 44, Tissue substitutes in radiation dosimetry and measurement (1989).

  34. S. C. Kappadath and C. C. Shaw, Med. Phys. 30, 1110 (2003).

    Article  Google Scholar 

  35. E. Samei and R. S. Saunders Jr., Phys. Med. Biol. 56, 6359 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Joung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Choi, YN. & Kim, HJ. Quantification of breast composition by using a dual-energy technique with a photon-counting detector: Monte Carlo simulation studies. Journal of the Korean Physical Society 64, 305–312 (2014). https://doi.org/10.3938/jkps.64.305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.305

Keywords

Navigation