Skip to main content
Log in

Modulations of eye movement patterns by spatial filtering during the learning and testing phases of an old/new face recognition task

  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

In two experiments, we examined the effects of varying the spatial frequency (SF) content of face images on eye movements during the learning and testing phases of an old/new recognition task. At both learning and testing, participants were presented with face stimuli band-pass filtered to 11 different SF bands, as well as an unfiltered baseline condition. We found that eye movements varied significantly as a function of SF. Specifically, the frequency of transitions between facial features showed a band-pass pattern, with more transitions for middle-band faces (≈5–20 cycles/face) than for low-band (≈<5 cpf) or high-band (≈>20 cpf) ones. These findings were similar for the learning and testing phases. The distributions of transitions across facial features were similar for the middle-band, high-band, and unfiltered faces, showing a concentration on the eyes and mouth; conversely, low-band faces elicited mostly transitions involving the nose and nasion. The eye movement patterns elicited by low, middle, and high bands are similar to those previous researchers have suggested reflect holistic, configural, and featural processing, respectively. More generally, our results are compatible with the hypotheses that eye movements are functional, and that the visual system makes flexible use of visuospatial information in face processing. Finally, our finding that only middle spatial frequencies yielded the same number and distribution of fixations as unfiltered faces adds more evidence to the idea that these frequencies are especially important for face recognition, and reveals a possible mediator for the superior performance that they elicit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We note that we obtained substantively similar results when examining nonnormalized dwell times. As well, we found broadly similar results when normalizing the dwell times according to the luminance or contrast of the AOIs. For the sake of brevity, these analyses are not included in this article.

  2. It should be noted that this interpretation is dependent on one’s quantitative definition of a saccade (and therefore a transition). Our eyetracking device could only register saccades that were at least 0.5 deg in magnitude. Thus, we cannot rule out the possibility that, for instance, the drop in transition frequencies at high spatial frequencies was in fact a shift toward more microsaccades.

References

  • Ahumada, A. J., Jr., & Lovell, J. (1971). Stimulus features in signal detection. Journal of the Acoustical Society of America, 49, 1751–1756.

    Article  Google Scholar 

  • Althoff, R. R., & Cohen, N. J. (1999). Eye-movement-based memory effect: A reprocessing effect in face perception. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 997–1010. doi:10.1037/0278-7393.25.4.997

    PubMed  Google Scholar 

  • Bindemann, M., Scheepers, C., & Burton, A. M. (2009). Viewpoint and center of gravity affect eye movements to human faces. Journal of Vision, 9(2), 7.1–16. doi:10.1167/9.2.7

    Article  Google Scholar 

  • Bombari, D., Mast, F. W., & Lobmaier, J. S. (2009). Featural, configural, and holistic face-processing strategies evoke different scan patterns. Perception, 38, 1508–1521.

    Article  PubMed  Google Scholar 

  • Boutet, I., Collin, C. A., & Faubert, J. (2003). Configural face encoding and spatial frequency information. Perception & Psychophysics, 65, 1078–1093.

    Article  Google Scholar 

  • Bruce, V., & Young, A. (1986). Understanding face recognition. British Journal of Psychology, 77, 305–327.

    Article  PubMed  Google Scholar 

  • Chauvin, A., Worsley, K. J., Schyns, P. G., Arguin, M., & Gosselin, F. (2005). Accurate statistical tests for smooth classification images. Journal of Vision, 5(9), 659–667. doi:10.1167/5.9.1

    Article  PubMed  Google Scholar 

  • Collin, C. A., Liu, C. H., Troje, N. F., McMullen, P. A., & Chaudhuri, A. (2004). Face recognition is affected by similarity in spatial frequency range to a greater degree than within-category object recognition. Journal of Experimental Psychology: Human Perception and Performance, 30, 975–987. doi:10.1037/0096-1523.30.5.975

    PubMed  Google Scholar 

  • Collin, C. A., Rainville, S. J. M., Watier, N. N., & Boutet, I. (2014). Configural and featural discriminations use the same spatial frequencies: A model observer vs. human observer analysis. Perception, 43, 509–526.

    Article  PubMed  Google Scholar 

  • Collin, C. A., Therrien, M. E., Campbell, K. B., & Hamm, J. P. (2012). Effects of band-pass spatial frequency filtering of face and object images on the amplitude of N170. Perception, 41, 717–732.

    Article  PubMed  Google Scholar 

  • Collin, C. A., Therrien, M., Martin, C., & Rainville, S. (2006a). Spatial frequency thresholds for face recognition when comparison faces are filtered and unfiltered. Perception & Psychophysics, 68, 879–889.

    Article  Google Scholar 

  • Collin, C. A., Wang, L., & O’Byrne, B. (2006b). Effects of image background on spatial-frequency thresholds for face recognition. Perception, 35, 1459–1472. doi:10.1068/P5584

    Article  PubMed  Google Scholar 

  • Costen, N. P., Parker, D. M., & Craw, I. (1994). Spatial content and spatial quantisation effects in face recognition. Perception, 23, 129–146.

    Article  PubMed  Google Scholar 

  • Costen, N. P., Parker, D. M., & Craw, I. (1996). Effects of high-pass and low-pass spatial filtering on face identification. Perception & Psychophysics, 58, 602–612.

    Article  Google Scholar 

  • Eckstein, M. P., & Ahumada, A. J., Jr. (2002). Classification images: A tool to analyze visual strategies. Journal of Vision, 2(1), i. doi:10.1167/2.1.i

    Article  Google Scholar 

  • Erceg-Hurn, D. M., & Mirosevich, V. M. (2008). Modern robust statistical methods: An easy way to maximize the accuracy and power of your research. American Psychologist, 63, 591–601.

    Article  PubMed  Google Scholar 

  • Fiorentini, A., Maffei, L., & Sandini, G. (1983). The role of high spatial frequencies in face perception. Perception, 12, 195–201.

    Article  PubMed  Google Scholar 

  • Foulsham, T., & Underwood, G. (2008). What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. Journal of Vision, 8(2), 6. doi:10.1167/8.2.6

    Article  PubMed  Google Scholar 

  • Freire, A., Lee, K., & Symons, L. A. (2000). The face-inversion effect as a deficit in the encoding of configural information: Direct evidence. Perception, 29, 159–170.

    Article  PubMed  Google Scholar 

  • Gaspar, C., Sekuler, A. B., & Bennett, P. J. (2008). Spatial frequency tuning of upright and inverted face identification. Vision Research, 48, 2817–2826. doi:10.1016/j.visres.2008.09.015

    Article  PubMed  Google Scholar 

  • Goffaux, V., Hault, B., Michel, C., Vuong, Q. C., & Rossion, B. (2005). The respective role of low and high spatial frequencies in supporting configural and featural processing of faces. Perception, 34, 77–86.

    Article  PubMed  Google Scholar 

  • Goffaux, V., & Rossion, B. (2006). Faces are “spatial”—Holistic face perception is supported by low spatial frequencies. Journal of Experimental Psychology: Human Perception and Performance, 32, 1023–1039. doi:10.1037/0096-1523.32.4.1023

    PubMed  Google Scholar 

  • Gold, J. M., Mundy, P. J., & Tjan, B. S. (2012). The perception of a face is no more than the sum of its parts. Psychological Science, 23, 427–434.

    Article  PubMed Central  PubMed  Google Scholar 

  • Goldstein, A. G., & Mackenberg, E. (1961). Recognition of human faces from isolated facial features: A developmental study. Psychonomic Science, 6, 149–150.

    Article  Google Scholar 

  • Gosselin, F., & Schyns, P. G. (2001). Bubbles: A technique to reveal the use of information in recognition tasks. Vision Research, 41, 2261–2271.

    Article  PubMed  Google Scholar 

  • Gosselin, F., & Schyns, P. G. (2004). No troubles with bubbles: A reply to Murray and Gold. Vision Research, 44, 471–477.

    Article  PubMed  Google Scholar 

  • Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95–112. doi:10.1007/BF02289823

    Article  Google Scholar 

  • Henderson, J. M., Williams, C. C., & Falk, R. J. (2005). Eye movements are functional during face learning. Memory & Cognition, 33, 98–106. doi:10.3758/BF03195300

    Article  Google Scholar 

  • Hess, V. L., & Pick, A. D. (1974). Discrimination of schematic faces by nursery school children. Child Development, 45, 1151–1154.

    Article  PubMed  Google Scholar 

  • Hsiao, J. H. W., & Cottrell, G. (2008). Two fixations suffice in face recognition. Psychological Science, 19, 998–1006.

    Article  PubMed  Google Scholar 

  • Konar, Y., Bennett, P. J., & Sekuler, A. B. (2010). Holistic processing is not correlated with face-identification accuracy. Psychological Science, 21, 38–43. doi:10.1177/0956797609356508

    Article  PubMed  Google Scholar 

  • Liu, C. H., Collin, C. A., Rainville, S. J. M., & Chaudhuri, A. (2000). The effects of spatial frequency overlap on face recognition. Journal of Experimental Psychology: Human Perception and Performance, 26, 956–979. doi:10.1037/0096-1523.26.3.956

    PubMed  Google Scholar 

  • Loftus, G. R. (1972). Eye fixations, and recognition memory for pictures. Cognitive Psychology, 3, 525–551.

    Article  Google Scholar 

  • Luria, S. M., & Strauss, M. S. (1978). Comparison of eye movements over faces in photographic positives and negatives. Perception, 7, 349–358.

    Article  PubMed  Google Scholar 

  • Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A user’s guide. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Mangini, M. C., & Biederman, I. (2004). Making the ineffable explicit: Estimating the information employed for face classifications. Cognitive Science, 28, 209–226. doi:10.1207/s15516709cog2802_4

    Article  Google Scholar 

  • Mannan, S., Ruddock, K. H., & Wooding, D. S. (1995). Automatic control of saccadic eye movements made in visual inspection of briefly presented 2-D images. Spatial Vision, 9, 363–386.

    Article  PubMed  Google Scholar 

  • Mannan, S. K., Ruddock, K. H., & Wooding, D. S. (1996). The relationship between the locations of spatial features and those of fixations made during visual examination of briefly presented images. Spatial Vision, 10, 165–188.

    Article  PubMed  Google Scholar 

  • Maurer, D., Grand, R. L., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6, 255–260.

    Article  PubMed  Google Scholar 

  • McKone, E., & Yovel, G. (2009). Why does picture-plane inversion sometimes dissociate perception of features and spacing in faces, and sometimes not? Toward a new theory of holistic processing. Psychonomic Bulletin & Review, 16, 778–797. doi:10.3758/PBR.16.5.778

    Article  Google Scholar 

  • Morrison, D. J., & Schyns, P. G. (2001). Usage of spatial scales for the categorization of faces, objects, and scenes. Psychonomic Bulletin & Review, 8, 454–469.

    Article  Google Scholar 

  • Murray, R. F., & Gold, J. M. (2004a). Reply to Gosselin and Schyns. Vision Research, 44, 479–482. doi:10.1016/j.visres.2003.10.008

    Article  Google Scholar 

  • Murray, R. F., & Gold, J. M. (2004b). Troubles with bubbles. Vision Research, 44, 461–470. doi:10.1016/j.visres.2003.10.006

    Article  PubMed  Google Scholar 

  • Näsänen, R. (1999). Spatial frequency bandwidth used in the recognition of facial images. Vision Research, 39, 3824–3833.

    Article  PubMed  Google Scholar 

  • Nelson, E. A., Watier, N., Collin, C. A., & Boutet, I. (2013). Are holistic and configural processing distinct? A within-subjects comparison of four common face processing tasks. Journal of Vision, 13(9), 100. doi:10.1167/13.9.100

    Article  Google Scholar 

  • Neri, P., Parker, A. J., & Blakemore, C. (1999). Probing the human stereoscopic system with reverse correlation. Nature, 401, 695–698.

    Article  PubMed  Google Scholar 

  • Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 34, 72–107.

    Article  PubMed  Google Scholar 

  • Parker, D. M., & Costen, N. P. (2001). One extreme or the other, or perhaps the golden mean? Issues of spatial resolution in face processing. In H. Ellis & N. Macrae (Eds.), Validation in psychology: Research perspectives (pp. 151–162). New Brunswick, NJ: Transaction.

    Google Scholar 

  • Richler, J. J., Cheung, O. S., & Gauthier, I. (2011a). Beliefs alter holistic face processing . . . if response bias is not taken into account. Journal of Vision, 11(13), 17. doi:10.1167/11.13.17

    Article  PubMed Central  PubMed  Google Scholar 

  • Richler, J. J., Cheung, O. S., & Gauthier, I. (2011b). Holistic processing predicts face recognition. Psychological Science, 22, 464–471. doi:10.1177/0956797611401753

    Article  PubMed Central  PubMed  Google Scholar 

  • Richler, J. J., Palmeri, T. J., & Gauthier, I. (2012). Meanings, mechanisms, and measures of holistic processing. Frontiers in Psychology, 3, 553. doi:10.3389/fpsyg.2012.00553

    Article  PubMed Central  PubMed  Google Scholar 

  • Rolls, E. T., Baylis, G. C., & Leonard, C. M. (1985). Role of low and high spatial frequencies in the face-selective responses of neurons in the cortex in the superior temporal sulcus in the monkey. Vision Research, 25, 1021–1035.

    Article  PubMed  Google Scholar 

  • Rossion, B. (2013). The composite face illusion: A whole window into our understanding of holistic face perception. Visual Cognition. Advance online publication.

  • Schyns, P. G. (1998). Diagnostic recognition: Task constraints, object information, and their interactions. Cognition, 67, 147–179.

    Article  PubMed  Google Scholar 

  • Schyns, P. G., Bonnar, L., & Gosselin, F. (2002). Show me the features! Understanding recognition from the use of visual information. Psychological Science, 13, 402–409.

    Article  PubMed  Google Scholar 

  • Schyns, P. G., & Gosselin, F. (2003). Diagnostic use of scale information for componential and holistic recognition. In M. A. Peterson & G. Rhodes (Eds.), Perception of faces, objects, and scenes: Analytic and holistic processes (pp. 120–148). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Schyns, P. G., & Oliva, A. (1997). Flexible, diagnosticity-driven, rather than fixed, perceptually determined scale selection in scene and face recognition. Perception, 26, 1027–1038.

    Article  PubMed  Google Scholar 

  • Sekuler, A. B., Gaspar, C. M., Gold, J. M., & Bennett, P. J. (2004). Inversion leads to quantitative, not qualitative, changes in face processing. Current Biology, 14, 391–396. doi:10.1016/j.cub.2004.02.028

    Article  PubMed  Google Scholar 

  • Sergent, J. (1986). Microgenesis of face perception. In H. D. Ellis, M. A. Jeeves, F. Newcombe, & A. M. Young (Eds.), Aspects of face processing (pp. 17–33). Dordrecht, The Netherlands: Martinus Nijhoff.

    Chapter  Google Scholar 

  • Smith, M. L., Gosselin, F., & Schyns, P. G. (2004). Receptive fields for flexible face categorizations. Psychological Science, 15, 753–761. doi:10.1111/j.0956-7976.2004.00752.x

    Article  PubMed  Google Scholar 

  • Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology, 46A, 225–245.

    Article  Google Scholar 

  • Tanskanen, T., Nasanen, R., Montez, T., Paallysaho, J., & Hari, R. (2005). Face recognition and cortical responses show similar sensitivity to noise spatial frequency. Cerebral Cortex, 15, 526–534. doi:10.1093/cercor/bhh152bhh152

    Article  PubMed  Google Scholar 

  • Taschereau-Dumouchel, V., Rossion, B., Schyns, P. G., & Gosselin, F. (2010). Interattribute distances do not represent the identity of real world faces. Frontiers in Perception Science, 1, 159. doi:10.3389/fpsyg.2010.00159

    Google Scholar 

  • Van Selst, M., & Jolicœur, P. (1994). A solution to the effect of sample size on outlier elimination. Quarterly Journal of Experimental Psychology, 47A, 631–650.

    Article  Google Scholar 

  • Vinette, C., Gosselin, F., & Schyns, P. G. (2004). Spatio-temporal dynamics of face recognition in a flash: It’s in the eyes. Cognitive Science, 28, 289–301. doi:10.1207/s15516709cog2802_8

    Google Scholar 

  • Võ, M. L.-H., Smith, T. J., Mital, P. K., & Henderson, J. M. (2012). Do the eyes really have it? Dynamic allocation of attention when viewing moving faces. Journal of Vision, 12(13), 3. doi:10.1167/12.13.3

    Article  PubMed  Google Scholar 

  • Walker-Smith, G. J., Gale, A. G., & Findlay, J. M. (1977). Eye movement strategies in face perception. Perception, 6, 313–326.

    Article  PubMed  Google Scholar 

  • Wang, H. F., Friel, N., Gosselin, F., & Schyns, P. G. (2011). Efficient bubbles for visual categorization tasks. Vision Research, 51, 1318–1323.

    Article  PubMed  Google Scholar 

  • Watier, N. N., Collin, C. A., & Boutet, I. (2010). Spatial-frequency thresholds for configural and featural discriminations in upright and inverted faces. Perception, 39, 502–513.

    Article  PubMed  Google Scholar 

  • Willenbockel, V., Fiset, D., Chauvin, A., Blais, C., Arguin, M., Tanaka, J. W., . . . Gosselin, F. (2010). Does face inversion change spatial frequency tuning? Journal of Experimental Psychology: Human Perception and Performance, 36, 122–135. doi:10.1037/a0016465

  • Williams, C. C., & Henderson, J. M. (2007). The face inversion effect is not a consequence of aberrant eye movements. Memory & Cognition, 35, 1977–1985. doi:10.3758/BF03192930

    Article  Google Scholar 

  • Yarbus, A. (1967). Eye movements and vision. New York, NY: Plenum Press.

    Book  Google Scholar 

  • Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81, 141–145.

    Article  Google Scholar 

  • Young, A. W., Hellawell, D., & Hay, D. C. (1987). Configurational information in face perception. Perception, 16, 747–759.

    Article  PubMed  Google Scholar 

Download references

Author note

This research project was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chantal L. Lemieux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemieux, C.L., Collin, C.A. & Nelson, E.A. Modulations of eye movement patterns by spatial filtering during the learning and testing phases of an old/new face recognition task. Atten Percept Psychophys 77, 536–550 (2015). https://doi.org/10.3758/s13414-014-0778-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13414-014-0778-0

Keywords

Navigation