Skip to main content
Log in

Asymptotic analysis of the equilibrium equation of a fluid-saturated porous medium by the homogenization method

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The homogenization of static elasticity equations describing the stress strain state of fluid-saturated porous medium is considered. In this paper, the homogenization method is used to determine the pore pressure transfer tensor, which (a coefficient in the isotropic case) is an important parameter influencing the stress-strain state of fluid-saturated rocks. It shows what a part of the pressure in the fluid is “active” in the formation of macroscopic strains.

The pore pressure transfer tensor is calculated for model and real geological specimens. The dependence of this tensor on the porosity, pore shape, and Poisson ratio is investigated. The use of the computational technique for determining the effective properties of rocks shows that it is practically important in the engineering geology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Bakhvalov and G. P. Panasenko, Homogenization of Processes in PeriodicMedia (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  2. B. E. Pobedrya, Mechanics of Composite Materials (Izdat. MGU, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  3. N. V. Melnikova, V. V. Rzhevskii, and M. M. Protod’yakonova (Editors), Handbook (Cadastre) of Physical Properties of Rocks (Nedra, Moscow, 1975) [in Russian].

    Google Scholar 

  4. S. P. Clark, Jr. (Editors), Handbook of Physical Constants of Rocks (Mir, Moscow, 1969) [in Russian].

    Google Scholar 

  5. N. B. Dortman (Editors), Practical Handbook of Physical Properties of Rocks and Minerals (Petrophysics) (Nedra. Moscow, 1975) [in Russian].

    Google Scholar 

  6. E. V. Kalinin, S. V. Sheshenin, and M. I. Bujakov, “Variations in Stress Strain State of Rocks Composing the Valley Sides under Seismic Actions,” Vestnik Moskov. Univ. Ser. 4. Geologiya, No. 6, 43–48 (1996) [Moscow Univ. Geol. Bull. (Engl. Transl.)].

    Google Scholar 

  7. S. V. Sheshenin, E. V. Kalinin, and M. I. Bujakov, “Equivalent Properties of Rock Strata: Static and Dynamic Analysis,” Int. J. Numeric. Analyt. Meth. Geomech. 21 (8), 569–579 (1997)

    Article  Google Scholar 

  8. J. G. Wang, C. F. Leung, and Y. Ichikawa, “A simplified Homogenization Method for Composite Soils,” Comput. Geotech., 29 (6), 477–500 (2002).

    Article  Google Scholar 

  9. G. Hassen, M. Gueguin, and P. de Buhan, “A Homogenization Approach for Assessing the Yield Strength Properties of Stone Column Reinforced Soils,” Eur. J. Mech. A/Solids 37, 266–280 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V. I. Gorbachev, “Homogenization of Linear Problems in the Mechanics of Composites with Nonperiodic Inhomogeneities,” Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 31–37 (2001) [Mech. Solids (Engl. Transl.) 36 (1), 24–29 (2001)].

    Google Scholar 

  11. C. H. Cheng, “Crack Models for a Transversely Anisotropic Medium,” J. Geophys. Res. Solid Earth 98 (B1), 675–684 (1993).

    Article  Google Scholar 

  12. J. D. Eshelby, “The Determination of the Elastic Field on an Ellipsoidal Inclusion and Related Problems,” Proc. Roy. Soc. London. Ser. A 241 (1226), 376–396 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. A. Biot, “General Theory of Three-Dimensional Consolidation,” J. Appl. Phys. 12, 155–164 (1941).

    Article  ADS  MATH  Google Scholar 

  14. J. Geertama, “The Effect of Fluid Pressure Decline on Volumetric Changes of Porous Rocks,” Trans. AIME 210, 331–339 (1957).

    Google Scholar 

  15. M. A. Biot and D. G. Willis, “The Elastic Coefficients of the Theory of Consolidation,” J. Appl. Phys. 24, 594–601 (1957).

    MathSciNet  Google Scholar 

  16. I. Fatt, “Compressibility of Sandstones at Low to Moderate Pressures,” AAPG Bull. 42 (8), 1924–1957 (1958).

    Google Scholar 

  17. A. W. Skempton, “Effective Stress in Soils, Concrete and Rocks,” in Proc. of Conf. on Pore Pressure and Suction in Soils (Butterworth, London, 1960), pp. 4–16.

    Google Scholar 

  18. D. E. Ochs, H. Y. Chen, and L. W. Teufer, “Relating in Situ Stresses and Transient Pressure Testing for a Fractured Well,” Paper SPE 38674 Presented at the Annual Technical Conference & Exhibition, San Antonio, 1997, pp. 301–316.

    Google Scholar 

  19. Y. Gueguen and M. Bouteca, Mechanics of Fluid-Saturated Rocks (Elsevier Acad. Press, 2004).

    Google Scholar 

  20. E. M. Chesnokov, M. Ammerman, S. Sinha, and Y. A. Kukharenko, “Tensor Character of Biot Parameters in Poroelastic Anisotropic Media under Stress: Static and Dynamic Cases,” in Proc. 2nd Int. Workshop Rainbow in the Earth, Berkley, California, 2005 (2005).

    Google Scholar 

  21. V. M. Dobrynin, Physical Properties of Oil-Gas Collectors in Long Holes (Nedra, Moscow, 1965) [in Russian].

    Google Scholar 

  22. A. Nur and J. D. Byerlee, “An Exact Effective Stress Law for Elastic Deformation of Rock with Fluids,” J. Geophys. Res. 76 (26), 6414–6419 (1971).

    Article  ADS  Google Scholar 

  23. M. A. Addis, “The Stress-Depletion Response of Reservoirs,” in Proc. of 1997 SPE Annual Technical Conference and Exhibition. Pt. 1. Formation Evolution and Reservoir Geology. Sam Antonio, 1997, pp. 55–65.

    Google Scholar 

  24. M. A. Biot, “Mechanics of Deformation and Acoustic Propagation in Porous Media,” J. Appl. Phys. 33, 1482–1498 (1962).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. M. M. Carroll, “An Effective Stress Law for Anisotropic Elastic Deformation,” J.Geoph. Res. SolidEarth 84 (B13), 7510–7512 (1979).

    Article  ADS  Google Scholar 

  26. M. Thompson and J. R. Willis, “A Reformulation of the Equations of Anisotropic Poroelasticity,” J. Appl. Phys. 58, 612–616 (1991).

    MATH  Google Scholar 

  27. C. C. Mei, “Micro-Scale Basis of Seepage Flow. Theory of Homogenization,” in Lectures Notes on Fluid Dynamics, Ch. 6.2 (2002), pp. 1–7.

    Google Scholar 

  28. S. V. Sheshenin and M. I. Savenkova, “Homogenization of Nonlinear Problems in the Mechanics of Composites,” Vestnik Moskov. Univ. Ser. I Mat. Mekh. 67 (5), 58–62 (2012) [Moscow Univ. Meth. Bull. (Engl. Transl.) 67 (5), 126–130 (2012)].

    Google Scholar 

  29. R. M. Christensen, Introduction to Mechanics of Composite Materials (Wiley, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

  30. Yu. V. Frolova, “Patterns of Transformations in the Compositions and Properties of Icelandic Hyaloclastites during Lithogenesis,” Vestnik Moskov. Univ. Ser. IV. Geolog., No. 2, 45–55 (2010) [Moscow Univ. Geol. Bull. (Engl. Transl.) 65 (2), 104–114 (2010)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Artamonova.

Additional information

Original Russian Text © N.B. Artamonova, A.Zh. Mukatova, S.V. Sheshenin, 2017, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2017, No. 2, pp. 115–129.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artamonova, N.B., Mukatova, A.Z. & Sheshenin, S.V. Asymptotic analysis of the equilibrium equation of a fluid-saturated porous medium by the homogenization method. Mech. Solids 52, 212–223 (2017). https://doi.org/10.3103/S002565441702011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565441702011X

Keywords

Navigation