Skip to main content
Log in

Algorithm for multiplying two octonions

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

An Errata to this article was published on 01 January 2013

Abstract

We consider algorithmic aspects of improving calculations of octonion product. Octonions together with quaternions represent a variety of hypercomplex numbers. An advantage of the suggested algorithm consists in decreased twice number of calculated real number products needed to compute the octonion product if compared to a straightforward naive way of performing the calculation. During synthesis of the discussed algorithm we use a fact that octonions product may be represented by a vector-matrix product. Such representation provides a possibility to discover repeating elements in the matrix structure and to use specific properties of their mutual placement to decrease the number of real number products needed to compute the octonion product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers (Nauka, Moscow, 1973) [in Russian].

    MATH  Google Scholar 

  2. M. V. Sinkov, Yu. Ye. Boyarinova, and Ya. A. Kalinovskiy, Finite-Dimensional Hypercomplex Number Systems. Basic Theory. Applications (IPRI NANU, Kyiv, 2010) [in Russian].

    Google Scholar 

  3. E. Malekian and A. Zakerolhosseini, “NTRU-Like Public Key Cryptosystems beyond Dedekind Domain up to Alternative Algebra” (Section 2), Transactions on Computational Science (Springer, 2011), pp. 25–41.

  4. T. Bülow and G. Sommer, “Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case,” IEEE Trans. Signal Process. SP-49, No. 11, 2844 (Nov. 2001).

    MathSciNet  Google Scholar 

  5. D. Alfsmann, “On families of 2 N-dimensional hypercomplex algebras suitable for digital signal processing,” in Proc. European Signal Processing Conf. EUSIPCO, 2006, Florence, Italy (Florence, 2006).

  6. D. Alfsmann, H. G. Göckler, S. J. Sangwine, and T. A. Ell, “Hypercomplex Algebras in Digital Signal Processing: Benefits and Drawbacks (Tutorial),” in Proc. EURASIP 15th European Signal Processing Conf. EUSIPCO, 2007, Poznań, Poland (Poznań, 2007), pp. 1322–1326.

  7. S. J. Sangwine and N. Le Bihan, “Hypercomplex analytic signals: extension of the analytic signal concept to complex signals,” in Proc. EURASIP 15th European Signal Processing Conf. EUSIPCO, 2007, Poznań, Poland (Poznań, 2007), pp. 621–624.

  8. C. E. Moxey, S. J. Sangwine, and T. A. Ell, “Hypercomplex correlation techniques for vector images,” IEEE Trans. Signal Process. 51, 1941 (July 2003).

    MathSciNet  Google Scholar 

  9. E. Bayro-Corrochano, “Multi-resolution image analysis using the quaternion wavelet transform,” Numerical Algorithms 39,Nos. 1–3, 35 (July, 2005).

    MathSciNet  MATH  Google Scholar 

  10. L. Shi and B. Funt, “Quaternion Colour Texture Segmentation,” Comput. Vis. Image Und. 107, Nos. 1–2, 88 (2007).

    Google Scholar 

  11. L. Kavan, S. Collins, J. Žára, and C. O’sullivan, “Skinning with Dual Quaternions,” in Proc. Symp. on Interactive 3D Graphics and Games, I3D’07 (2007). pp. 1–23.

  12. R. Calderbank, S. Das, N. Al-Dhahir, and S. Diggavi, “Construction and analysis of a new quaternionic Space-time code for 4 transmit antennas,” Commun. Inf. Syst. 5, No. 1, 1 (2005).

    MathSciNet  MATH  Google Scholar 

  13. J.-C. Belfiore and G. Rekaya, “Quaternionic lattices for space-time coding,” in Proc. of Inf. Theory Workshop. IEEE, ITW 2003, 31 March–4 April 2003, Paris, France (2003).

  14. Ö. Ertuğ, “Communication over Hypercomplex Kahler Manifolds: Capacity of Dual-Polarized Multidimensional-MIMO Channels,” Wireless Personal Commun. 41, No. 1, 155 (April 2007).

    Google Scholar 

  15. O. M. Makarov, “Algorithm of multiplying two quaternions,” Zh. Vychisl. Matem. i Matem. Fiz. 17, No. 6, 1574 (1977).

    MATH  Google Scholar 

  16. S. K. Rososhek, A. I. Litvin, N. Ye. Cherniayeva, “Fast algorithm of multiplying two hypercomplex numbers,” Vestnik TGU. Ser. Matematika. Kibernetika. Informatika, No. 269, 66 (2000).

  17. A. Ţariov and G. Ţariova, “Aspekty algorytmiczne organizacji ukladu procesorowego do mnozenia liczb Cayleya,” Elektronika, No. 11, 137 (2010).

  18. A. Ţariov, “Strategie racjonalizacji obliczen przy wyznaczaniu iloczynow macierzowo-wektorowych,” Metody Informatyki Stosowanej, No. 1, 147 (2008).

  19. A. Ţariov, Algorytmiczne Aspekty Racjonalizacji Obliczen w cyfrowym przetwarzaniu sygnalow (Metody Informatyki Stosowanej, Gdańsk, 2011) [in Poland].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A. Cariow, G. Cariowa, 2012, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2012, Vol. 55, No. 10, pp. 44–54.

An Erratum for this chapter can be found at http://dx.doi.org/10.3103/S073527271301007X

About this article

Cite this article

Cariow, A., Cariowa, G. Algorithm for multiplying two octonions. Radioelectron.Commun.Syst. 55, 464–473 (2012). https://doi.org/10.3103/S0735272712100056

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272712100056

Keywords

Navigation