Skip to main content
Log in

A new ice sheet model validated by remote sensing of the Greenland ice sheet

  • Research Article
  • Published:
Central European Journal of Geosciences

Abstract

Accurate prediction of future sea level rise requires models that accurately reproduce and explain the recent observed dramatic ice sheet behaviours. This study presents a new multi-phase, multiple-rheology, scalable and extensible geofluid model of the Greenland ice sheet that shows the credential of successfully reproducing the mass loss rate derived from the Gravity Recovery and Climate Experiment (GRACE), and the microwave remote sensed surface melt area over the past decade. Model simulated early 21st century surface ice flow compares satisfactorily with InSAR measurements. Accurate simulation of the three metrics simultaneously cannot be explained by fortunate model tuning and give us confidence in using this modelling system for projection of the future fate of Greenland Ice Sheet (GrIS). Based on this fully adaptable three dimensional, thermo-mechanically coupled prognostic ice model, we examined the flow sensitivity to granular basal sliding, and further identified that this leads to a positive feedback contributing to enhanced mass loss in a future warming climate. The rheological properties of ice depend sensitively on its temperature, thus we further verified modelâŹs temperature solver against in situ observations. Driven by the NCEP/NCAR reanalysis atmospheric parameters, the ice model simulated GrIS mass loss rate compares favourably with that derived from the GRACE measurements, or about −147 km3/yr over the 2002–2008 period. Increase of the summer maximum melt area extent (SME) is indicative of expansion of the ablation zone. The modeled SME from year 1979 to 2006 compares well with the cross-polarized gradient ratio method (XPGR) observed melt area in terms of annual variabilities. A high correlation of 0.88 is found between the two time series. In the 30-year model simulation series, the surface melt exhibited large inter-annual and decadal variability, years 2002, 2005 and 2007 being three significant recent melt episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greve R., Blatter H., Dynamics of Ice Sheets and Glaciers. Series: Advances in Geophysical and Environmental Mechanics and Mathematics, Springer-Verlag Berlin Heidenberg, 2009

    Book  Google Scholar 

  2. Yin J., Schlesinger M., Stouffer R., Model projections of rapid sea-level rise on the northeast coast of the United States, Nature, 2009, 2, 262–266

    Google Scholar 

  3. Alley R., Ice-core evidence of abrupt climate changes, PNAS (please expand), 2000, 97, 1331–1334

    Article  Google Scholar 

  4. Thomas R., PARCA Investigators 1, Program for arctic regional climate assessment (PARCA): Goal, key findings, and future directions, J. Geophys. Res. 2001, 06, 33691–33705

    Article  Google Scholar 

  5. Steffen K., Box J., Surface climatology of the Greenland ice sheet: Greenland climate network 1995–1999, J. Geophys. Res., 2001, 106, 33951–33964

    Article  Google Scholar 

  6. Bamber, J., Ekholm S., Krabill W., A New, highresolution digital elevation model of Greenland fully validated with airborne laser altimeter data, J. Geophys. Res., 2001, 106, 6733–6745

    Article  Google Scholar 

  7. Mote T. L., Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007, Geophys. Res. Lett., 2007, 34, L22507, doi:10.1029/2007GL031976

    Article  Google Scholar 

  8. Alley R., The Younger Dryas cold interval as viewed from central Greenland, Quaternary Sci. Revi., 2000, 19, 213–226

    Article  Google Scholar 

  9. Krabill W., Abdalati W., Frederick E., Manizade S., Martin C., Sonntag J., Swift R., Thomas R. et al., Greenland ice sheet: High-elevation balance and peripheral thinning, Science, 2000, 289, 428–430

    Article  Google Scholar 

  10. Abdalati W., Steffen K., Snowmelt on the Greenland Ice Sheet as derived from passive microwave satellite data, J. Climate, 1997, 10, 165–175

    Article  Google Scholar 

  11. Rignot E., Kanagaratnam P., Changes in the velocity structure of the Greenland ice sheet, Science, 2006, 311, 986–990

    Article  Google Scholar 

  12. Hansen J., Sato M., Ruedy R., Lo K., Lea D., Medina-Elizade M., Global temperature change, P. Natl.Acad. Sci. USA, 2006, 103, 14288–14293

    Article  Google Scholar 

  13. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007, Cambridge University Press, Cambridge and New York, 2007

    Google Scholar 

  14. Ren D., Karoly D. M. Leslie L., Mountain glacier melting rate for the period 2001–2030 estimated from three CGCM simulations for the Greater Himalayas. J. Appl. Meteorol. Climatol., 2007, 46, 890–899

    Article  Google Scholar 

  15. Thompson L., Yao T., Mosley-Thompson E., Davis M., Henderson K., Lin P., A high resolution millennial record of the south Asian monsoon from Himalayan ice cores, Science, 2000, 289, 1916–1919

    Article  Google Scholar 

  16. Alley R., In search of ice-stream sticky spots, J. Glaciol., 1993, 39, 447–454

    Google Scholar 

  17. Jacka T., Recommendations from the SCAR Ice Sheet Mass Balance and Sea Level (ISMASS) Workshop. American Geophysical Union, Spring Meeting 2002, abstract U42A-01

  18. Jop P., Forterre Y., Pouliquen O., A constitutive law for dense granular flows, Nature, 2006, 441, 727–730

    Article  Google Scholar 

  19. MacAyeal D., Irregular oscillations of the west Antarctic ice sheet, Nature, 1992, 359, 29–32

    Article  Google Scholar 

  20. Alley R., Dupont T., Parizek B., Anandakrishnan S., Lawson D., Larson G., Evenson E., Outburst flooding and initiation of ice-stream surges in response to climatic cooling: A hypothesis, Geomorphology, 2005, 75, 76–89

    Google Scholar 

  21. Greve R., On the response of the Greenland ice sheet to greenhouse climate change, J. Climatic Change, 2000, 46, 289–303

    Article  Google Scholar 

  22. Greve R., Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet, Annals of Glaciology, 2005, 42, 424–432

    Article  Google Scholar 

  23. Cuffey K., Clow G., Alley R., Stuiver M., Waddington E., Saltus R., Large arctic temperature change at the Wisconsin-Holocene glacial transition, Science, 1995, 270, 455–458

    Article  Google Scholar 

  24. Pollack H., Hurter S., Johnson J., Heat flow from the Earths interior: analysis of the global data set, Rev. Geophys., 1993, 31, 267–280

    Article  Google Scholar 

  25. Collins W., Bitz C., Blackmon M., Bonan G., Bretherton C., Carton J., Chang P., Doney S., et al., The community climate system model: CCSM3, J. Climate, 2006, 19, 2122–2143

    Article  Google Scholar 

  26. Van der Veen C., Whillans I., Force budget: I. Theory and numerical methods, J. Glaciology, 1989, 35, 53–60

    Article  Google Scholar 

  27. Ren D., Leslie L., Karoly D., Landslide risk analysis using a new constitutive relationship for granular flow, Earth Interact., 2008, 12, 1–16

    Article  Google Scholar 

  28. Zwinger T., Greve R., Gagliardini O., Shiraiwa T., Lyly M., A full Stokesflow thermo-mechanical model for firn and ice applied to Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 2007, 45, 29–37

    Article  Google Scholar 

  29. Bueler E., Brown J., Shallow shelf approximation as a “sliding law” in a thermaomechanically coupled ice sheet model, J. Geophys. Res., 2009, 114, F03008

    Article  Google Scholar 

  30. Engelhardt H., Kamb B., Basal sliding of Ice Stream B, West Antarctica, J. Glaciol., 1998, 44, 223–230

    Google Scholar 

  31. Weertman J., Creep deformation of ice, Annu. Rev. of Earth. Pl. Sc., 1983, 11, 215–240

    Article  Google Scholar 

  32. Bindschadler R., The importance of pressuruized subglacial water in seperation and sliding at the glacier bed, J. Glaciol., 1983, 29, 3–19

    Google Scholar 

  33. Zwally H., Abdalati W., Herring T., Larson K., Saba J., Steffen K., Surface melt-induced acceleration of Greenland ice-sheet flow, Science, 2002, 297, 218–222

    Article  Google Scholar 

  34. Glen J., The creep of polycrystalline ice, Proc. Roy. Soc. Lond. A, 1955, 228, 519–538

    Article  Google Scholar 

  35. Goldsby D., Kohlstedt D., Superplastic deformation of ice: experimental observations, J. Geophys. Res., 2001, 106, 11017–11030

    Article  Google Scholar 

  36. Durham W.B., Kirby S.H., Stern L.A., Effects of dispersed particulates on the rheology of water ice at planetary conditions, J. Geophys. Res., 1992, 97, 20883–20897

    Article  Google Scholar 

  37. Smith E., Crosson W., Cooper H., Weng H., Estimation of surface heat and moisture fluxes over a prairie grassland. Part III: Design ofa hybrid physical/remote sensing biosphere model, J. Geophys. Res., 1993, 98, 4951–4978

    Article  Google Scholar 

  38. Crosson W., Laymon C., Inguva R., Schamschula M., Assimilating remote sensing data in a surface flux-soil moisture model, Hydrol. Proc., 2002, 16, 1645–1662

    Article  Google Scholar 

  39. Benson C., Stratigraphic studies in the snow and firn of the Greenland ice sheet. Snow, Ice and Permafrost Research Establishment (SIPRE), Research Report 70, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1962

    Google Scholar 

  40. Ohmura A., Wild M., Bengtsson L., A possible change in mass balance of Greenland and Antarctica ice sheets in the coming century, J. Climate, 1996, 9, 2124–2135

    Article  Google Scholar 

  41. Oerlemans J., Glaciers and Climate Change, A.A. Balkema Publishers, Lisse, 2001

    Google Scholar 

  42. Peng G., Leslie L., Shao Y., Environmental modeling and prediction, Springer Verlag Berlin Heidenberg New York, 2002

    Google Scholar 

  43. Asselin R., Frequency filter for time integrations, Mon. Wea. Rev., 1972, 100, 487–490

    Article  Google Scholar 

  44. Ren D., Adjoint retrieval of prognostic land surface model variables for an NWP model: Assimilation of ground surface temperature, Cent. Eur. J. Geosc., 2010, 2, 83–102

    Article  Google Scholar 

  45. Schoof C., A variational approach to ice stream flow, J. Fluid Mech., 2006, 556, 227–251

    Article  Google Scholar 

  46. Ren D., 4D-Var retrieval of prognostic land surface model variables, PhD Thesis., University of Oklahoma, Norman, Oklahoma, 2004

    Google Scholar 

  47. Zwally H., Giovinetto M., Balance mass flux and ice velocity across the equilibrium line in grainage systems of Greenland, J. Geophys. Res., 2001, 106, 33717–33728

    Article  Google Scholar 

  48. Fahnestock M., Bindschadler R., Kwok R., Jezek K., Greenland ice sheet surface properties and ice dy-namics from ERS-1 SAR imagery, Science, 1993, 262, 1530–1534

    Article  Google Scholar 

  49. Joughin I., Fahnestock M., MacAyeal D., Bamber J., Gogineni P., Observation and analysis of ice flow in the largest Greenland ice stream, J. Geophys. Res., 2001, 106, 34021–34034

    Article  Google Scholar 

  50. Ashcraft I.S., Long D., Comparison of methods for melt detection over Greenland using active and passive microwave measurements, Internat. J. Remote Sens., 2006, 27, 2469–2488

    Article  Google Scholar 

  51. Fausto R., Ahlstrom A., Van As D., Boggild C., Johnsen S., A new present-day temperature parameterization for Greenland, J. Glaciology, 2009, 55, 95–105

    Article  Google Scholar 

  52. Maslanik J., Stroeve J., DMSP SSM/I daily polar gridded brightness temperature, 1987–2007, digital media, National Snow and Ice Data Centre Boulder, Colorado, 2007

    Google Scholar 

  53. Chen J., Wilson C., Tapley B., Satellite gravity measurements confirm accelerated melting of Greenland ice sheet, Science, 2006, 313, 1958–1960

    Article  Google Scholar 

  54. Wang W., Warner R., Modelling of anisotropic ice flow in Law Dome, East Antarctica, Ann. Glaciol., 1999, 29, 184–190

    Article  Google Scholar 

  55. Aschwanden A., Blatter H., Mathematical modelling and numerical simulation of polythermal glaciers, J. Geophys. Res., 2009, 114, F01027

    Article  Google Scholar 

  56. Meier M., Dyurgerov M., Rick U., Oneel S., Pfeffer W., Anderson R., Anderson S., Glazovsky A., Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century, Science, 2007, 317, 1064–1067

    Article  Google Scholar 

  57. Van der Veen C., Fundamentals of glacier dynamics, A.A. Balkema, Rotterdam, Netherlands, 1999

    Google Scholar 

  58. Paterson W., The physics of glaciers, Pergamon, New York, 1994

    Google Scholar 

  59. Goldsby D., Kohlstedt D., Superplastic deformation of ice: experimental observations, J. Geophys. Res., 2001, 106, 11017–1103

    Article  Google Scholar 

  60. Hooke R., Iverson N., experimental study of ice flow around a bump: Comparison with theory. Geogr. Ann., 1985, 67A, 187–197

    Article  Google Scholar 

  61. Gilpin R., A model of the “liquid-like” layer between ice and a substrate with applications to wire regelation and particle migration, J. Colloid. Interface Sci., 1979, 68, 235–251

    Article  Google Scholar 

  62. Shreve R., Glacier sliding at subfreezing temperatures, J. Glaciology, 1984, 30, 341–347

    Google Scholar 

  63. Hallet B., Glacial quarrying: a simple theoretical model, Ann. Glaciol, 1996, 22, 1–9

    Google Scholar 

  64. Alley R., Marotzke J., Nordhaus W.D., Overpeck J.T., Peteet D. M., Pielke R.A. Jr., Pierrehumbert R.T., Rhines P.B. et al., Abrupt Climate Change, Science, 2003, 299, 2005–20103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ren, D., Fu, R., Karoly, D.J. et al. A new ice sheet model validated by remote sensing of the Greenland ice sheet. Cent. Eur. J. Geosci. 2, 501–513 (2010). https://doi.org/10.2478/v10085-010-0012-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/v10085-010-0012-9

Keywords

Navigation