Skip to main content
Log in

Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

  • Research Article
  • Published:
Central European Journal of Engineering

Abstract

Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (τ (app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers, information is hardly available in this area. In this study, bond characteristics of deformed reinforcing steel bars embedded in SFRSCC is investigated secondly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ACI Committee 544. State-of-the-Art Report on Fiber Reinforced Concrete — ACI 544.1R-96 (Reapproved 2002),tACI Manual of Concrete Practice, Part 6, 2008, ACI544.1R-7 — ACI544.1R-24, 2008

  2. Mandel J., Wei S., Said S., Studies of the properties of the fiber-matrix interface in steel fiber reinforced mortar, ACI Mater. J., 84(2), 1987, 101–109

    Google Scholar 

  3. Stang H., Shah S.P., Failure of fiber-reinforced composites by pull-out fracture, J. Mater. Sci., 21(3), 1986, 953–957

    Article  Google Scholar 

  4. Armelin H.S., Banthia N., Predicting the flexural post cracking performance of steel fiber reinforced concrete from the pullout of single fibers. ACI Mater. J., 94(1), 1997, 18–31

    Google Scholar 

  5. Li V.C., Wu C., Wang S., Ogawa A., et al., Interface tailoring for strain-hardening polyvinyl alcoholengineered cementitious composites (PVA-ECC), ACI Mater. J., 99(5), 2002, 463–472

    Google Scholar 

  6. Lee Y., Kang S.-T., Kim J.-K., Pull-out behavior of inclined steel fiber in an ultra-high strength cementitious matrix, Constr. Build. Mater., 24, 2010, 2030–2041

    Article  Google Scholar 

  7. Chanvillard G., Aïtcin P.C., Pull-out behavior of corrugated steel fibers, Adv. Cement. Mater., 4(1), 1996, 28–41

    Google Scholar 

  8. Sujivorakul C., Waas A.M., Guerrero P., Pull-out of a smooth fiber with an end anchorage. ASCE J. Mater. Civ. Eng., 126(9), 2000, 986–993

    Google Scholar 

  9. Ezeldin A.S., Balaguru B.N., Bond behavior of normal and high-strength fiber reinforced concrete, ACI Mater. J., 86(5), 1989, 515–524

    Google Scholar 

  10. Shannag M.J., Brincker R., Hansen W., Interfacial (fiber-matrix) properties of high-strength mortar (150 MPa) from fiber pullout, ACI Mater. J., 93(5), 1996, 1–7

    Google Scholar 

  11. Shannag M.J., Brincker R., Hansen W., Pullout behavior of steel fibers from cement-based composites, Cem. Concr. Res., 27(6), 1997, 925–936

    Article  Google Scholar 

  12. Orange G., Acker P., Vernet C., A new generation of UHP concrete: ductal damage resistance and micromechanical analysis. In: Third international workshop on high performance fiber reinforced cement composites (HPFRCC3), Mainz, Germany, 1999, 101–111

  13. Morton J., Groves G.W., The cracking of composites consisting of discontinuous reinforced concrete, J. Mater. Sci., 9(9), 1974, 1436–1445

    Article  Google Scholar 

  14. Bartos P., Review paper: bond in fibre reinforced cements and concretes, Int. J. Cem. Comp Liw. Concr., 3(3), 1981, 159–77

    Google Scholar 

  15. Li V.C., Wang Y., Baker S., Effect of inclining angle, bundling and surface treatment on synthetic fiber pullout from a cement matrix Comp, 21(2), 1990, 132–140

    Google Scholar 

  16. Wang Y., Li V.C., Backer S., Analysis of synthetic fiber pullout from a cement matrix. In: Mindess S, Shah SP, editors, Bonding in cementitious composites, MRS symposium proceedings, Pittsburgh (PA): Materials Research Society, 1988, 159–165

    Google Scholar 

  17. Stang H., Li V.C., Krenchel H., Design and structural applications of stress-crack width relations in fiber reinforced concrete, Mater. Struct., 28(4), 1995, 210–219

    Article  Google Scholar 

  18. Lin Z., Kanda T., Li V.C., On interface property characterization and performance of fiber-reinforced cementitious composites, Concr. Sci. Eng., 1, 1999, 173–184

    Google Scholar 

  19. Nammur G.G., Naaman A.E., A bond stress model for fiber reinforced concrete based on bond stress slip relationship, ACI Mater. J., 86(1), 1989, 45–57

    Google Scholar 

  20. Naaman A.E., Namur G.G., Alwan J.M., Najm H.S., Fiber pullout and bond slip I: analytical study, ASCE J. Struct Eng., 117(9), 1991, 2769–2790

    Article  Google Scholar 

  21. Naaman A.E., Namur G.G., Alwan J.M., Najm H.S., Fiber pullout and bond slip II: experimental validation. ASCE J. Struct. Eng., 117(9), 1991, 2791–2800

    Article  Google Scholar 

  22. Dubey A., Fiber reinforced concrete: characterization of flexural toughness & some studies on fibermatrix bond-slip interaction. PhD Thesis, University of British Columbia, 1999

  23. STUVO-rapport 102. Constructieve toepassingen van staalvezelbeton, Eindrapport van STUVO-cel 149, 1996, 77

    Google Scholar 

  24. Soroushian P., Mirza F., Alhozaimy A., Bonding of Confined Steel Fiber Reinforced Concrete to Deformed Bars, ACI Materials Journal 91(2), 1994, 141–149

    Google Scholar 

  25. Noghabai K., Behavior of Tie Elements of Plain and Fi-brous Concrete and Varying Cross Section, ACI Structural Journal 97(2), 2000, 277–284

    Google Scholar 

  26. Bigaj-van Vliet A.J., Bond of deformed reinforcing steel bars embedded in steel fiber reinforced concrete — State-of-the-art report, Delft Cluster, 2001, 65

  27. Grünewald S., Performance-based design of selfcompacting fibre reinforced concrete. PhD Thesis, Delft University of technology, 2004

  28. Holschemacher K., Klug Y., Pull-out behaviour of steel fibres in self-compacting concrete. First International Symposium on Design, Performance and Use of Self-Consolidating Concrete, China, 2005, 523–532

  29. Cunha V., Pull-out behaviour of hooked-end steel fibres in self-compacting concrete, Report 07-DEC/E06, University of Minho, 2007

  30. Schumacher P., Rotation Capacity of Self-Compacting Steel Fiber Reinforced Concrete, PhD Thesis, Delft Univer-sity of technology, 2008

  31. Aslani F., Nejadi S., Evaluation and Comparison of Experimental Results to Determine the Bond Characteristics of Steel Fiber Reinforced Self-Compacting Concrete. Structural Engineering World Congress (SEWC), Como, Italy, 4th–6th April, 2011

  32. Cox H.L., The elasticity and strength of paper and other fibrous materials, British J. Appl. Phys., 3(1), 1952, 72–79

    Article  Google Scholar 

  33. Greszczuk L.B., Theoretical Studies of the Mechanics of the Fibre-Matrix Interface in Composites, Interfaces in Composites, ASTM STP 452, American Society for Testing and Materials, PhiladelphiA, 1969, 42–58

  34. Lawrence P., Some Theoretical Considerations of Fibre Pullout from an Elastic Matrix, J. Mater. Sci., 7(1), 1972, 1–6

    Article  Google Scholar 

  35. Gopalaratnam V.S., Shah S.P., Tensile Fracture of Steel Fibre Reinforced Concrete, ASCE J Eng Mec Div, 113(5), 1987, 635–652

    Article  Google Scholar 

  36. Nammur G.Ir., Naaman A.E., Clark S.K., Analytical Prediction of the Pull-out Behavior of Steel Fibres in Cementitious Matrices. Cement Based Composites: Bonding in Cemenitious Composites, In: Symposia Proceedings, V.114, Materials Research Societ, Pittsburg, 1988, 217–224

  37. Gopalaratnam V.S., Cheng J., On the Modelling of Inelastic Interfaces in Fibrous Composites. Cement Based Composites: Bonding in Cementitious Composites, In: Symposia Proceedings, V.114, Materials Research Society, Pittsburgh, 1988, 225–231

  38. Stang H., Li Z., Shah S.P., The Pullout Problem-the Stress Versus Fracture Mechanical Approach, ASCE J. Eng. Mech., 116(10) 1990, 2136–2150

    Article  Google Scholar 

  39. Takaku A., Arridge R.G.C., The Effect of Interfacial Radial and Shear Stress on Fibre Pullout in Composite Materials, J. Phys., 6, 1973, 2038–2047

    Google Scholar 

  40. Hsueh C.H., Elastic Load Trnasfer from Partially Embedded Axially Loaded Fibre to Matrix, J. Mater. Sci. Let., 7(5), 1988, 497–500

    Article  Google Scholar 

  41. Hsueh C.H., Interfacial Debonding and Fibre Pullout Stresses of Fibre-Reinforced Composites, Mater. Sci. Eng., A123, 1990, 1–11

    Google Scholar 

  42. Hsueh, C.H. Interfacial Debonding and Fiber Pullout Stresses of Fiber Reinforced Composites II: Nonconstant Interfacial Bond Strength, Mater. Sci. Eng., A 125, 1990, 67–73.

    Google Scholar 

  43. Alwan J.M., Naaman A.E., Guerrero P., Effect of mechanical clamping on the pullout response of hooked steel fibers embedded in cementitious matrices, Concrete Sci. Eng., 1(1), 1999, 15–25

    Google Scholar 

  44. Chanvillard G., Modeling the pullout of wire-drawn steel fibers, Cement Concrete. Res., 29(7), 1999, 1027–1037

    Article  Google Scholar 

  45. Morton J., Groves G.W., The effect of metal wires on the fracture of a brittle matrix composites, J. Mater. Sci., 11(4), 1976, 617–622

    Article  Google Scholar 

  46. Kanda T., Li V.C., Interface property and apparent strength of a high strength hydrophilic fiber in cement matrix, ASCE J. Mater. Civ. Eng., 10(1), 1998, 5–13

    Article  Google Scholar 

  47. Aslani F., Nejadi S., A Comparison of the Bond Characteristics in Conventional and Self-Compacting Concrete, Part I: Experimental Results, The 9th Symposium on High Performance Concrete, Rotorua, New Zealand, Vol. 2, 2011, 435–442

  48. Aslani F., Nejadi S., A Comparison of the Bond Characteristics in Conventional and Self-Compacting Concrete, Part II: Code Provisions and Empirical Equations. The 9th Symposium on High Performance Concrete, Rotorua, New Zealand, Vol. 2, 2011, 443–450

    Google Scholar 

  49. Orangun C.O., Jirsa J.O., Breen J.E., A revaluation of test data on development length and splices, ACI Journal Proceeding 74(3), 1977, 114–122

    Google Scholar 

  50. Kemp E.L., Wilhelm W.J., Investigation of the parameters influencing bond cracking, ACI Journal Proceeding 76(1), 1979, 47–71

    Google Scholar 

  51. Kemp E.L., Bond in reinforced concrete: behavior and design criteria, ACI Journal Proceeding 83(1), 1983, 50–57

    MathSciNet  Google Scholar 

  52. Chapman R.A., Shah S.P., Early-age bond strength in reinforced concrete, ACI Materials Journal 84(6), 1987, 501–510.

    Google Scholar 

  53. Harajli M.H., Development/splice strength of reinforcing bars embedded in plain and fiber reinforced concrete, ACI Structural Journal 91(5), 1994, 511–520

    Google Scholar 

  54. Pillai S.U., Kirk D.W., Erki M.A. Reinforced concrete design, McGraw-Hill Ryserson, Whitby, ON, Canada, 1999

    Google Scholar 

  55. Bae S., Mix design, formwork pressure and bond charac-teristics of special self-consolidating concrete, MSc Thesis, Ryerson University, 2006

  56. CEB. 1982, Bulletin D’Information No 151-Bond action and bond behaviour of reinforcement (State-of-the-art report), CEB, Paris, France: p. 153

    Google Scholar 

  57. Barbosa M.T.G., Evaluation of the behavior of the bond in ordinary and high strength concrete. Doctoral Thesis, COPPE/UFRJ, 2001 (in Portuguese)

  58. Aslani F., Nejadi, S., Bond Behavior of Reinforce-ment in Conventional and Self-Compacting Concrete. Advances in Structural Engineering. In Press.

  59. CEB-FIP, Structural Concrete—Bulletin No. 1. Paris, France, 1999

  60. Huang Z., Engström B., Magnusson J., Experimental in-vestigation of the bond and anchorage behaviour of de-formed bars in high strength concrete. Report 94:4, Chalmers University of Technology, 1996

  61. Harajli M.H., Hout M., Jalkh W., Local bond stressslip behaviour of reinforcing bars em1bedded in plain and fibre concrete, ACI Mater Journal 92(4), 1995, 343–353

    Google Scholar 

  62. Harajli M.H., Local bond-slip behavior of reinforcing bars embedded in fiber reinforced concrete, In: Proceedings of international conference: Bond in concrete —From research to practice, Riga, 1992,7.87–7.97

  63. Hartwich K., Zum Riss- und Verformungsverhalten von stahlfaserverstärkten Stahlbetonstäben unter Längszug, Dissertation, TU Braunschweig, Institut für Baustoffe, Massivbau und Brandschutz, Heft 72, Germany, 1986

  64. Samen Ezeldin A., Balaguru P.N., Bond performance of reinforcing bars embedded in fiber reinforced concrete and subjected to monotonic and cyclic loads, In: Proceedings of ASCE on Serviceability and Durability of Construction Materials, 1990, 145–154

  65. Hota S., Naaman A.E., Bond stress-slip response of reinforcing bars embedded in FRC matrices under mono-tonic and cyclic loading, ACI Structural Journal 94(5), 1997, 525–537

    Google Scholar 

  66. Plizzari G.A., Bond and splitting crack development in normal and high strength fiber reinforced concrete, In: Proceedings of 13th Eng. Mechanics Division Conference — EMD 9, Baltimore, 1999

  67. De Bonte F., Hechtsterkte bij staalvezelbeton, MSc Theis, Katholieke Universiteit Leuven, Belgium, 2000, 140

    Google Scholar 

  68. Dupont D., Vandewalle L., De Bonte F., Influence of steel fibres on local bond behaviour, in: Bond in concrete — from research to standards, Balázs, G. et al. (ed.), 2002, 783–790

  69. Plizzari G.A., Lundgren K., Balázs G.L., Bond and Splitting in Fibre Reinforced Concrete under Repeated Loading, in: Bond in Concrete — from research to standards, Balázs, G. et al. (ed.), 2002, 221–229

  70. Weiße D., Verbundverhalten der Bewehrung in Stahlfaserbeton. 2. Leipziger Fachtagung “Innovationen im Bauwesen”, Faserbeton, Bauwerk Verlag GmbH, Berlin, Germany, 2002, 77–88

  71. Pfyl Th., Tragverhalten von Stahlfaserbeton, Dissertation ETH Nr. 15005, Zürich, Switzerland, 2003

  72. ACI 318. 2008. Building code requirements for structural con-crete and commentary, American Concrete Institute

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Aslani, F., Nejadi, S. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC). cent.eur.j.eng 2, 445–470 (2012). https://doi.org/10.2478/s13531-012-0015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13531-012-0015-3

Keywords

Navigation