Skip to main content
Log in

Diffuse disconnectivity in traumatic brain injury: a resting state fMRI and DTI study

  • Research Article
  • Published:
Translational Neuroscience

Abstract

Diffuse axonal injury is a common pathological consequence of Traumatic Brain Injury (TBI). Diffusion Tensor Imaging is an ideal technique to study white matter integrity using the Fractional Anisotropy (FA) index which is a measure of axonal integrity and coherence. There have been several reports showing reduced FA in individuals with TBI, which suggest demyelination or reduced fiber density in white matter tracts secondary to injury. Individuals with TBI are usually diagnosed with cognitive deficits such as reduced attention span, memory and executive function. In this study we sought to investigate correlations between brain functional networks, white matter integrity, and TBI severity in individuals with TBI ranging from mild to severe. A resting state functional magnetic resonance imaging protocol was used to study the default mode network in subjects at rest. FA values were decreased throughout all white matter tracts in the mild to severe TBI subjects. FA values were also negatively correlated with TBI injury severity ratings. The default mode network showed several brain regions in which connectivity measures were higher among individuals with TBI relative to control subjects. These findings suggest that, subsequent to TBI, the brain may undergo adaptation responses at the cellular level to compensate for functional impairment due to axonal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

Anterior Cingulate Cortex

BDI:

Beck Depression Inventory

BISQ:

Brain Injury Screening Questionnaire

CC:

Corpus Callosum

DAI:

Diffusion Axonal Injuries

DMN:

Default Mode Network

DTI:

Diffusion Tensor Imaging

FA:

Fractional Anisotropy

fMRI:

Functional Magnetic Resonance Imaging

ICA:

Independent Component Analysis

ICBM:

International Consortium for Brain Mapping

MCI:

Mild Cognitive Impairment

MD:

Mean Diffusivity Maps

MNI:

Montreal Neurological Institute

PC:

Parietal Cortices

PCC:

Posterior Cingulate Cortex

TBI:

Traumatic Brain Injury

TBSS:

Tract Based Spatial Statistics

TFCE:

Threshold-Free Cluster Enhancement

References

  1. Huisman T. A., Schwamm L. H., Schaefer P. W., Koroshetz W. J., Shetty-Alva N., Ozsunar Y. et al., Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury, AJNR Am. J. Neuroradiol., 2004, 25, 370–376

    PubMed  Google Scholar 

  2. Scheid R., Walther K., Guthke T., Preul C., von Cramon D. Y., Cognitive sequelae of diffuse axonal injury, Arch. Neurol., 2006, 63, 418–424

    Article  PubMed  Google Scholar 

  3. Kou Z., Wu Z., Tong K. A., Holshouser B., Benson R. R., Hu J. et al., The role of advanced MR imaging findings as biomarkers of traumatic brain injury, J. Head Trauma Rehabil., 2010, 25, 267–282

    Article  PubMed  Google Scholar 

  4. McDowell S., Whyte J., D’Esposito M., Working memory impairments in traumatic brain injury: evidence from a dual-task paradigm, Neuropsychologia, 1997, 35, 1341–1353

    Article  PubMed  CAS  Google Scholar 

  5. Arciniegas D. B., Held K., Wagner P., Cognitive Impairment Following Traumatic Brain Injury, Curr. Treat. Options Neurol., 2002, 4, 43–57

    Article  PubMed  Google Scholar 

  6. Schretlen D. J., Shapiro A. M., A quantitative review of the effects of traumatic brain injury on cognitive functioning, Int. Rev. Psychiatry, 2003, 15, 341–349

    Article  PubMed  Google Scholar 

  7. Hughes D. G., Jackson A., Mason D. L., Berry E., Hollis S., Yates D. W., Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery, Neuroradiology, 2004, 46, 550–558

    PubMed  Google Scholar 

  8. Guskiewicz K. M., Marshall S. W., Bailes J., McCrea M., Cantu R. C., Randolph C. et al., Association between recurrent concussion and late-life cognitive impairment in retired professional football players, Neurosurgery, 2005, 57, 719–726

    Article  PubMed  Google Scholar 

  9. Basser P. J., Pajevic S., Pierpaoli C., Duda J., Aldroubi A., In vivo fiber tractography using DT-MRI data, Magn. Reson. Med., 2000, 44, 625–632

    Article  PubMed  CAS  Google Scholar 

  10. Wozniak J. R., Krach L., Ward E., Mueller B. A., Muetzel R., Schnoebelen S. et al., Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: A diffusion tensor imaging (DTI) study, Arch. Clin. Neuropsychol., 2007, 22, 555–568

    Article  PubMed  Google Scholar 

  11. Rutgers D. R., Toulgoat F., Cazejust J., Fillard P., Lasjaunias P., Ducreux D., White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study, AJNR Am. J. Neuroradiol., 2008, 29, 514–519

    Article  PubMed  CAS  Google Scholar 

  12. Ogawa S., Lee T. M., Kay A. R., Tank D. W., Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. USA, 1990, 87, 9868–9872

    Article  PubMed  CAS  Google Scholar 

  13. McAllister T. W., Saykin A. J., Flashman L. A., Sparkling M. B., Johnson S. C., Mamourian A. C. et al., Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study, Neurology, 1999, 53, 1300–1308

    PubMed  CAS  Google Scholar 

  14. Scheibel R. S., Pearson D. A., Faria L. P., Kotrla K. J., Aylward E., Bachevalier J. et al., An fMRI study of executive functioning after severe diffuse TBI, Brain Inj., 2003, 17, 919–930

    Article  PubMed  CAS  Google Scholar 

  15. Azouvi P., Couillet J., Leclercq M., Martin Y., Asloun S., Rousseaux M., Divided attention and mental effort after severe traumatic brain injury, Neuropsychologia, 2004, 42, 1260–1268

    Article  PubMed  Google Scholar 

  16. Maruishi M., Miyatani M., Nakao T., Muranaka H., Compensatory cortical activation during performance of an attention task by patients with diffuse axonal injury: a functional magnetic resonance imaging study, J. Neurol. Neurosurg. Psychiatry, 2007, 78, 168–173

    Article  PubMed  CAS  Google Scholar 

  17. Haier R. J., Cerebral glucose metabolism and intelligence, In: Biological approaches to the study of human intelligence, Norwood, NJ: Ablex, 1993, 317–332

    Google Scholar 

  18. Tang C. Y., Eaves E. L., Ng J. C., Carpenter D. M., Kanellopoulou I., Mai X. et al., Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI, Intelligence, 2010, 38, 293–303

    Article  Google Scholar 

  19. Greicius M. D., Krasnow B., Reiss A. L., Menon V., Functional connectivity in the resting brain: A network analysis of the default mode hypothesis, Proc. Natl. Acad. Sci. USA, 2003, 100, 253–258

    Article  PubMed  CAS  Google Scholar 

  20. Damoiseaux J. S., Rombouts S. A., Barkhof F., Scheltens P., Stam C. J., Smith S. M. et al., Consistent resting-state networks across healthy subjects, Proc. Natl. Acad. Sci. USA, 2006, 103, 13848–13853

    Article  PubMed  CAS  Google Scholar 

  21. De Luca M., Beckmann C. F., De Stefano N., Matthews P. M., Smith S. M., fMRI resting state networks define distinct modes of longdistance interactions in the human brain, Neuroimage, 2006, 29, 1359–1367

    Article  PubMed  Google Scholar 

  22. MacDonald C. L., Schwarze N., Vaishnavi S. N., Epstein A. A., Snyder A. Z., Raichle M. E. et al., Verbal memory deficit following traumatic brain injury: assessment using advanced MRI methods, Neurology, 2008, 71, 1199–1201

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura T., Hillary F. G., Biswal B. B., Resting network plasticity following brain injury, Plos One, 2009, 4, e8220

    Article  PubMed  Google Scholar 

  24. Smith S. M., Jenkinson M., Johansen-Berg H., Rueckert D., Nichols T. E., Mackay C. E. et al., Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data, Neuroimage, 2006, 31, 1487–1505

    Article  PubMed  Google Scholar 

  25. Smith S. M., Nichols T. E., Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference, Neuroimage, 2009, 44, 83–98

    Article  PubMed  Google Scholar 

  26. Beckmann C. F., Smith S. M., Probabilistic independent component analysis for functional magnetic resonance imaging, IEEE Trans. Med. Imaging, 2004, 23, 137–152

    Article  PubMed  Google Scholar 

  27. Benson R. R., Meda S. A., Vasudevan S., Kou Z., Govindarajan K. A., Hanks R. A. et al., Global white matter analysis of diffusion tensor images is predictive of injury severity in traumatic brain injury, J. Neurotraum., 2007, 24, 446–459

    Article  Google Scholar 

  28. Xu J., Rasmussen I. A., Lagopoulos J., Håberg A., Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging, J. Neurotraum., 2007, 24, 753–765

    Article  Google Scholar 

  29. Nobuhara K., Okugawa G., Sugimoto T., Minami T., Tamagaki C., Takase K. et al., Frontal white matter anisotropy and symptom severity of late-life depression: a magnetic resonance diffusion tensor imaging study, J. Neurol. Neurosurg. Psychiatry, 2006, 77, 120–122

    Article  PubMed  CAS  Google Scholar 

  30. Herrmann L. L., Le Masurier M., Ebmeier K. P., White matter hyperintensities in late life depression: a systematic review, J. Neurol. Neurosurg. Psychiatry, 2008, 79, 619–624

    Article  PubMed  CAS  Google Scholar 

  31. Greicius M. D., Srivastava G., Reiss A. L., Menon V., Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI, Proc. Natl. Acad. Sci. USA, 2004, 101, 4637–4642

    Article  PubMed  CAS  Google Scholar 

  32. Sorg C., Riedl V., Mühlau M., Calhoun V. D., Eichele T., Läer L. et al., Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2007, 104, 18760–18765

    Article  PubMed  CAS  Google Scholar 

  33. Liang M., Zhou Y., Jiang T., Liu Z., Tian L., Liu H. et al., Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging, Neuroreport, 2006, 17, 209–213

    Article  PubMed  Google Scholar 

  34. Cherkassky V. L., Kana R. K., Keller T. A., Just M. A., Functional connectivity in a baseline resting-state network in autism, Neuroreport, 2006, 17, 1687–1690

    Article  PubMed  Google Scholar 

  35. Haier R. J., Siegel B. V. Jr., MacLachlan A., Soderling E., Lottenberg S., Buchsbaum M. S., Regional glucose metabolic changes after learning a complex visuospatial motor task — a positron emission tomographic study, Brain Res., 1992, 570, 134–143

    Article  PubMed  CAS  Google Scholar 

  36. Davis S. W., Dennis N. A., Daselaar S. M., Fleck M. S., Cabeza R., Que PASA? The posterior-anterior shift in aging, Cereb. Cortex, 2008, 18, 1201–1209

    Article  PubMed  Google Scholar 

  37. Damoiseaux J. S., Prater K. E., Miller B. L., Greicius M. D., Functional connectivity tracks clinical deterioration in Alzheimer’s disease, Neurobiol. Aging, 2011, epub ahead of print

  38. Qi Z. G., Wu X., Wang Z., Zhang N., Dong H., Yao L. et al., Impairment and compensation coexist in amnestic MCI default mode network, Neuroimage, 2010, 50, 48–55

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Pasinetti.

About this article

Cite this article

Tang, C.Y., Eaves, E., Dams-O’Connor, K. et al. Diffuse disconnectivity in traumatic brain injury: a resting state fMRI and DTI study. Translat.Neurosci. 3, 9–14 (2012). https://doi.org/10.2478/s13380-012-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-012-0003-3

Keywords

Navigation