Skip to main content
Log in

Nutritional relationships between hemi-parasitic mistletoe and some of its deciduous hosts in different habitats

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Parasitism of plants by other plants provides an exceptional opportunity for investigating correlative nutritional relationships. Because of lacking a usual plant-root sytem capable of active uptake, the best correlation for predicting the concentrations of elements in parasitic plants is often those in the host plants. This study, therefore, mainly focuses on determination of i) mineral nutrient partitioning between hemi-parasitic white berry mistletoe (Viscum album L. subsp. album) and four of its deciduous hosts growing in different habitats namely wetland and semi-arid and ii) effects of these habitat types on nutrient absorption. During the research, leaf samples of both hemi-parasites and their host plants were chemically analysed, mistletoes on each host plants were counted and the results were considered statistically. Concentrations of some elements (N, P, K, Na, S, Cu, Zn) were higher in mistletoe whereas some others (Ca, Mg, Fe, Mn and B) were higher in the hosts (p< 0.05). Habitat type was also determined to be effective in host-parasite systems. Revealing information about nutritional interactions between multi-host hemi-parasites and their host plants is a useful tool to understand their functions in ecosystems, population-community dynamics and their co-evolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amico G.C. & Aizen M.A. 2000. Mistletoe seed dispersal by a marsupial. Nature 408: 929–930.

    CAS  PubMed  Google Scholar 

  • Anonymous, 1994. Soil Laboratory Tecniques, Turkish Forest Ministry. Eskişehir Forest Soil Ecology Research Laboratory, Eskişehir, Turkey.

  • Anonymous, 2007. Eskişehir Meteorology Station, Eskişehir, Turkey.

  • Bannister P. 1989. Nitrogen concentration and mimicry in some New Zealand mistletoes. Oecologia 79: 128–132.

    Article  Google Scholar 

  • Barney C.W., Hawksworth F.G. & Geils B.W. 1998. Hosts of Viscum album. Eur. J. For. Path. 28: 187–208.

    Article  Google Scholar 

  • Black C.A. 1965. Methods of soil analyses. American Society of Agronomy, Inc. Publisher, Madison, Wisconsin, USA.

    Google Scholar 

  • Bowie M. & Ward D. 2004. Water and nutrient status of the mistletoe Plicosepalus acaciae parasitic on isolated Negev desert populations of Acacia raddiana differing in level of mortality. J. Arid. Environ. 56: 487–508.

    Article  Google Scholar 

  • Brayshay B.A. & Dinnin M. 1999. Integrated palaeoecological evidence for biodiversity at the floodplain-forest magrin. J. Biogeography 26: 115–131.

    Article  Google Scholar 

  • Brown P.H. & Shelp B.J. 1997. Boron mobility in plants. Plant Soil 193: 85–101.

    Article  CAS  Google Scholar 

  • Cireli B., Seçmen Ö. & Öztürk M. 1983. Bitki ekolojisi uygulamalar? (Applications of plant ecology), Ege üniv. Fen Fak. Kitaplar Serisi No: 51, Bornova-İzmir.

  • Classius C. 1601. Caroli clusi at rebatis. rariorum plantarum historia, Antwerp, Belgium.

    Google Scholar 

  • Davies D.M. & Graves J.D. 2000. The impact of phosphorus on interactions of the hemi-parasitic angiosperm Rhinanthus minor and its host Lolium perenne. Oecologia 124: 100–106.

    Article  Google Scholar 

  • de Buen L. & Ornelas J. 2001. Seed dispersal of the mistletoe Psittacanthus schiedeanus by birds in central Veracruz, Mexico. Biotropica 33: 487–494.

    Article  Google Scholar 

  • Devkota M.P. 2005. Biology of mistletoes and their status in Nepal Himalaya. Himalayan J. Sci. 3: 85–88.

    Google Scholar 

  • Dobbertin M. & Rigling A. 2006. Pine mistletoe (Viscum album ssp. austriacum) contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of Switzerland. Forest Pathol. 36: 309–322.

    Article  Google Scholar 

  • Doi H., Yurlova N.I., Vodyanltskaya S.N., Klkuchi E., Shikano S., Yadrenkina E.N. & Zuykova E.I. 2008. Parasite-induced changes in nitrogen isotope signatures of host tissues. J. Parasitol. 94: 292–295.

    Article  PubMed  Google Scholar 

  • Ehleringer J.R. & Schulze E.D. 1985. Mineral concentrations in an autoparasitic Phoradendron californicum growing on a parasitic P. californicum and its hosts, Cercidium floridum. Am. J. Bot. 72: 568–571.

    Article  CAS  Google Scholar 

  • Emberger L. 1952. Sur le quotient pluviother migse. C.R. Acad. Sci. 234: 2508–2510.

    Google Scholar 

  • Erdir M. & Türe C. 2003. Plant diversity and general ecological characteristics of a protected area of MusaÖzü dam and its environment (Eskisehir, Turkey). Anadolu University, J. Sci. Technol. 4: 301–322.

    Google Scholar 

  • Fischer J.T. 1983. Water relations of mistletoes and their hosts. In: Calder M. & Bernhardt P., (eds), The biology of mistletoes, Academic Pres, San Diego, CA.

    Google Scholar 

  • Garkoti S.C., Akoijam S.B. & Singh S.P. 2002. Ecology of water relations between mistletoe (Taxillus vestitus) and its host oak (Quercus floribunda). Tropic. Ecol. 43: 243–249.

    Google Scholar 

  • Gathumbi S.M., Bohlen P.J. & Graetz D.A. 2005. Nutrient enrichment of wetland vegetation and sediments in subtropical pastures. Soil Sci. Soc. Am. J. 69: 539–548.

    Article  CAS  Google Scholar 

  • Gauslaa Y. & Odasz A.M. 1990. Water relations, temperatures, and mineral nutrients in Pedicularis dasyantha (Scrophulariaceae) from Svalbard, Norway. Holarctic Ecology 13: 112–121.

    Google Scholar 

  • Glatzel G. 1983. Mineral nutrition and water relations of hemiparasitic mistletoes: a question of partitioning. Experiments with Loranthus europaeus on Quercus petraea and Quercus robur. Oecologia 56(2–3): 193–201.

    Article  Google Scholar 

  • Glatzel G. & Geils B.W. 2009. Mistletoe ecophysiology: hostparasite interactions. Botany 87: 10–15.

    Article  CAS  Google Scholar 

  • Gülçur F. 1974. Topraǧın Fiziksel ve Kimyasal Analiz Metodlar? (Physical and Chemical Analysis Methods of Soil), İstanbul üniversitesi Orman Fak. Yay., İ.Ü, Yay. No: 1970, O.F. Yay. No: 201, İstanbul.

  • Hellmuth E.O. 1971. Eco-physiological studies on plants in arid and semi-arid regions in Western Australia, IV. Comparison of the field physiology of the host, Acacia grasbyi and its hemiparasite, Amyema nestor under optimal and stress conditions. J. Ecol. 59: 351–363.

    Article  Google Scholar 

  • Hosseini S.M., Kartoolinejad D., Mirnia S.K., Tabinzadeh Z., Akbarinia M. & Shayanmahr F. 2008a. The effects of Viscum album L. on foliar weight and nutrients content of host trees in Caspian forests (Iran). Polish J. Ecol. 55: 579–583.

    Google Scholar 

  • Hosseini S.M., Kartoolinejad D., Mirnia S.K., Tabinzadeh Z., Akbarinia M. & Shayanmahr F. 2008b. The European mistletoe effects on leaves and nutritional elements of two host species in Hyrcanian forests. Silvia Lusitana 16: 229–237.

    Google Scholar 

  • Kroll H. 1998. Literature on archaeological remains of cultivated plants (1996/1997). Veget Hist Archaeobot. 7: 23–56.

    Article  Google Scholar 

  • Kutbay H.G., Karaer F. & Kilinç M. 1996. The relationships of some nutrients between Cuscuta epipthymum (L.) L. var. epithymum and Heliotropium europaeum L. Tr. J. Bot. 20: 515–518.

    Google Scholar 

  • Ladley J.J. & Kelly D. 1995. Explosive New Zealand mistletoes. Nature 378: 766.

    Article  CAS  Google Scholar 

  • Lamien N., Boussim J.I., Nygarad R., Ouédraogo J.S., Odén P.C. & Guinko S. 2006. Mistletoe impact on Shea tree (Vitellaria paradoxa C.F. Gaertn.) flowering and fruiting behaviour in savanna area from Burkina Faso. Environ. Exp. Bot. 55: 142–148.

    Article  Google Scholar 

  • Lamont B. 1983. Mineral nutrition of mistletoes, pp. 185–204. In: Calder M. & Bernhardt P. (eds), The Biology of Mistletoes, Academic Press, New York.

    Google Scholar 

  • Malicki L. & Berbeciowa C. 1986. Content of basic macroelements in common parasitical weeds. Acta Agrobot. 39: 123–128.

    CAS  Google Scholar 

  • Malone M., White P. & Morales M.A. 2002. Mobilization of calcium in glasshouse tomato plants by localized scorching. J. Exp. Bot. 53: 83–88.

    Article  CAS  PubMed  Google Scholar 

  • Marshall J.D. & Ehleringer J.R. 1990. Are xylem-tapping mistletoes partially heterotrophic? Oecologia 84: 244–248.

    Google Scholar 

  • Marshall J.D., Ehleringer J.R., Schulze E.D. & Farquhar G. 1994. Carbon isotope composition, gas exchange, and heterotrophy in Australian mistletoes. Funct. Ecol. 8: 237–241.

    Article  Google Scholar 

  • Marvier M.A. 1996. Parasitic plant-host interactions: Plant performance and indirect effects on parasite-feeding herbivores. Ecology. 77: 1398–1409.

    Article  Google Scholar 

  • Mathiasen R.L., Nickrent D.L., Shaw D.C. & Watson D.M. 2008. Mistletoes — Ecology, systematics, ecology and management. Plant Disease 92: 987–1006.

    Article  Google Scholar 

  • Mehrotra R.S. 1978. Plant pathology. Mc-Graw-Mill, New Delhi.

    Google Scholar 

  • Miura O., Kuris A.M., Torchin M.E., Hechinger R.F. & Chiba S. 2006. Parasites alter host phenotype and may create a new ecological niche for snail hosts. Proceed. Royal Society B 273: 1323–1328.

    Article  Google Scholar 

  • Norton D.A., Ladley J.J. & Owen H.J. 1997. Distribution and population structure of the loranthaceous mistletoes Alepis flavida, Peraxilla colensoi and Peraxilla tetrapetala within two New Zealand Northofagus forests. NZ J. Bot. 35: 323–336.

    Google Scholar 

  • Novacek F. 1985. Mineral deficiency in forest woody plants caused by giant mistletoes (Loranthus europaeus Jacq.) and European mistletoe (Viscum album Boiss. & Reut.) Lesnictvi, Cesk. Akad. Zemed. Ustav. Vedeckotech. Inf. Zemed. 31: 145–154.

    CAS  Google Scholar 

  • Pegeau K., Simier P., Bizec B., Robins R. & Fer A. 2003. Characterization of nitrogen relationships between Sorghum bicolor and the root-hemiparasitic angiosperm Striga hermonthica /Del.) Benth. using K15NO3 as isotopic tracer. J. Exp. Bot. 54: 383, 789–799.

    Article  Google Scholar 

  • Pres M.C. & Phoenix G.K. 2005. Impacts of parasitic plants on natural communities. New Phytol. 166: 737–751.

    Article  Google Scholar 

  • Puustinen S. & Mutikainen P. 2001. Host-parasite-herbivore interactions: implications of host cyanogenesis. Ecology 82: 2059–2071.

    Google Scholar 

  • Richter A., Popp M., Mensen R., Stewart G.R. & von Willerat D.J. 1995. Heterotrophic carbon gain of the parasitic angiosperm Tapinanthes oleifolius. Aust. J. Plant Physiol. 22: 537–544.

    Article  CAS  Google Scholar 

  • RÖdl T. & Ward D. 2002. Host recognition in a desert mistletoe: early stages of development are influenced by substrate and host origin. Functional Ecology 16: 128–134.

    Article  Google Scholar 

  • Schulze E.D., Turner N.C. & Glatzel G. 1984. Carbon, water and nutrient relations of two mistletoes and their hosts: A hypothesis. Plant, Cell & Environ. 7: 293–299.

    CAS  Google Scholar 

  • Smith S. & Stewart G.R. 1990. Effect of potassium levels on the stomatal behaviour of the hemiparasite Striga hermonthica. Plant Physiol. 94: 1472–1476.

    Article  CAS  PubMed  Google Scholar 

  • Soto-Gamboa M. & Bozinovic F. 2002. Fruit-disperser interaction in a mistletoe-bird system: A comparison of two mechanisms of fruit processing on seed germination. Plant Ecol. 159: 171–174.

    Article  Google Scholar 

  • Tsopelas P., Angelopoulos A., Economou A. & Soulioti N. 2004. Mistletoe (Viscum album) in the fir forest of Mount Parnis, Greece. Forest Ecol. Manag. 202: 59–65.

    Article  Google Scholar 

  • Türe C., Bingöl N.A. & Middleton B. 2004. Characterization of the habitat of Lythrum salicaria L. in floodplain forests in western Turkey-Effects on the stem height and seed production. Wetlands. 24: 711–716.

    Article  Google Scholar 

  • Türe C. & Böcük H. 2007. An investigation on the diversity, distribution and conservation of Poaceae species growing naturally in Eskişehir province (Central Anatolia-Turkey), Pak. J. Bot. 39: 1055–1070.

    Google Scholar 

  • Umucalilar H.D., Gülşen N., Coşkun B., Hayirli A. & Dural H. 2007. Nutrient composition of mistletoe (Viscum album) and its nutritive value for ruminant animals. Agroforest Syst. 71: 77–87.

    Article  Google Scholar 

  • Walter H. & Lieth 1960. Kilemediagramm-Weltatlas, Fischer, Jena.

    Google Scholar 

  • Watson D.M. 2001. Mistletoe — A keystone resource in forest and woodlands worldwide. Annu. Rev. Ecol. System 32: 219–250.

    Article  Google Scholar 

  • Yoder J. 2001. Host-plant recognition by parasitic Scrophulariaceae. Current Opinion in Plant Biology 4: 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Yüksel B., Akbulut S. & Keten A. 2005. The damage, biology and control of pıne mistletoes (Viscum album ssp. austriacum (Wiesb.) Vollman), Süleyman Demirel University. J. of Forest Faculty A2: 111–124.

    Google Scholar 

  • Zuber D. 2004. Biological flora of Central Europe: Viscum album L. Flora 199: 181–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz Türe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Türe, C., Böcük, H. & Aşan, Z. Nutritional relationships between hemi-parasitic mistletoe and some of its deciduous hosts in different habitats. Biologia 65, 859–867 (2010). https://doi.org/10.2478/s11756-010-0088-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0088-5

Key words

Navigation