Skip to main content
Log in

Mesospheric temperatures derived from three decades of hydroxyl airglow measurements from Longyearbyen, Svalbard (78°N)

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The airglow hydroxyl temperature record from Longyearbyen, Svalbard, is updated with data from the last seven seasons (2005/2006–2011/2012). The temperatures are derived from ground-based spectral measurements of the hydroxyl airglow layer, which ranges from 76 to 90 km height. The overall daily average mesospheric temperature for the whole temperature record is 206 K. This is by 3 K less than what Dyrland and Sigernes (2007) reported in their last update on the temperature series. This temperature difference is due to cold winter seasons from 2008 to 2010. 2009/2010 was the coldest winter season ever recorded over Longyearbyen, with a seasonal average of 185 K. Temperature variability within the winter seasons is investigated, and the temperature difference between late December (local minimum) and late January (local maximum) is approximately 8 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azeem, S.M.I., G.G. Sivjee, Y.-I. Won, and C. Mutiso (2007), Solar cycle signature and secular long-term trend in OH airglow temperature observations at South Pole, Antarctica, J. Geophys. Res. 112,A1, A01305, DOI: 10.1029/ 2005JA011475.

    Article  Google Scholar 

  • Baker, D.J., and A.T. Stair Jr. (1988), Rocket measurements of the altitude distributions of the hydroxyl airglow, Phys. Scr. 37,4, 611, DOI: 10.1088/0031-8949/37/4/021.

    Article  Google Scholar 

  • Becker, E. (2012), Dynamical control of the middle atmosphere, Space Sci. Rev. 168,1–4, 283–314, DOI: 10.1007/s11214-011-9841-5.

    Article  Google Scholar 

  • Beig, G., S. Fadnavis, H. Schmidt, and G.P. Brasseur (2012), Inter-comparison of 11-year solar cycle response in mesospheric ozone and temperature obtained by HALOE satellite data and HAMMONIA model, J. Geophys. Res. 117,D4, D00P10, DOI: 10.1029/2011JD015697.

    Google Scholar 

  • Beldon, C.L., and N.J. Mitchell (2009), Gravity waves in the mesopause region observed by meteor radar. 2: Climatologies of gravity waves in the Antarctic and Arctic, J. Atmos. Solar-Terr. Phys. 71,8–9, 875–884, DOI: 10.1016/ j.jastp.2009.03.009.

    Article  Google Scholar 

  • Bevington, P.R., and D.K. Robinson (1992), Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, 328 pp.

    Google Scholar 

  • Bittner, M., D. Offermann, H.-H. Graef, M. Donner, and K. Hamilton (2002), An 18-year time series of OH rotational temperatures and middle atmosphere decadal variations, J. Atmos. Solar-Terr. Phys. 64,8–11, 1147–1166, DOI: 10.1016/S1364-6826(02)00065-2.

    Article  Google Scholar 

  • Cho, Y.-M., G.G. Shepherd, Y.-I. Won, S. Sargoytchev, S. Brown, and B. Solheim (2004), MLT cooling during stratospheric warming events, Geophys. Res. Lett. 31,10, L10104, DOI: 10.1029/2004GL019552.

    Article  Google Scholar 

  • Collins, R.L., A. Nomura, and C.S. Gardner (1994), Gravity waves in the upper mesosphere over Antarctica: Lidar observations at the South Pole and Syowa, J. Geophys. Res. 99,D3, 5475–5485, DOI: 10.1029/93JD03276.

    Article  Google Scholar 

  • Cosby, P.C., and T.G. Slanger (2007), OH spectroscopy and chemistry investigated with astronomical sky spectra, Can. J. Phys. 85,2, 77–99, DOI: 10.1139/p06-088.

    Article  Google Scholar 

  • Dyrland, M.E., and F. Sigernes (2007), An update on the hydroxyl airglow temperature record from the Auroral Station in Adventdalen, Svalbard (1980–2005), Can. J. Phys. 85,2, 143–151, DOI: 10.1139/p07-040.

    Article  Google Scholar 

  • Dyrland, M.E., F.J. Mulligan, C.M. Hall, F. Sigernes, M. Tsutsumi, and C.S. Deehr (2010), Response of OH airglow temperatures to neutral air dynamics at 78°N, 16°E during the anomalous 2003–2004 winter, J. Geophys. Res. 115,D7, D07103, DOI: 10.1029/2009JD012726.

    Article  Google Scholar 

  • eKlima (2012), Norwegian Meteorological Institute’s climate database, http://eklima.met.no/, accessed November 2012.

    Google Scholar 

  • French, W.J.R., and A.R. Klekociuk (2011), Long-term trends in Antarctic winter hydroxyl temperatures, J. Geophys. Res. 116,D4, D00P09, DOI: 10.1029/2011JD015731.

    Google Scholar 

  • French, W.J.R, G.B. Burns, K. Finlayson, P.A. Greet, R.P. Lowe, and P.F.B. Williams (2000), Hydroxyl (6-2) airglow emission intensity ratios for rotational temperature determination, Ann. Geophys. 18,10, 1293–1303, DOI: 10.1007/s00585-000-1293-2.

    Google Scholar 

  • Goldman, A., W.G. Schoenfeld, D. Goorvitch, C. Chackerian Jr., H. Dothe, F. Mélen, M.C. Abrams, and J.E.A. Selby (1998), Updated line parameters for OH X2II-X2II (v″,v′) transitions, J. Quant. Spectrosc. Radiat. Transfer 59,3–5, 453–469, DOI: 10.1016/S0022-4073(97)00112-X.

    Article  Google Scholar 

  • Hall, C.M., M.E. Dyrland, M. Tsutsumi, and F.J. Mulligan (2012), Temperature trends at 90 km over Svalbard, Norway (78°N 16°E), seen in one decade of meteor radar observations, J. Geophys. Res. 117,D8, D08104, DOI: 10.1029/2011JD017028.

    Article  Google Scholar 

  • Herzberg, G. (1950), Molecular Spectra and Molecular Structure. Vol. I. Spectra of Diatomic Molecules, Van Nostrand Company Inc., New York.

    Google Scholar 

  • Hoffmann, P., W. Singer, D. Keuer, W.K. Hocking, M. Kunze, and Y. Murayama (2007), Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events, J. Atmos. Solar-Terr. Phys. 69,17–18, 2355–2366, DOI: 10.1016/j.jastp.2007.06.010.

    Article  Google Scholar 

  • Krassovsky, V.I., N.N. Shefov, and V.I. Yarin (1962), Atlas of the airglow spectrum 3000-12 400 Å, Planet. Space Sci. 9,12, 883–915, DOI: 10.1016/0032-0633(62)90008-9.

    Article  Google Scholar 

  • Kuttippurath, J., and G. Nikulin (2012), A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004-2009/2010, Atmos. Chem. Phys. 12,17, 8115–8129, DOI: 10.5194/acp-12-8115-2012.

    Article  Google Scholar 

  • Labitzke, K., and B. Naujokat (2000), The lower Arctic stratosphere in winter since 1952, SPARC Newsletter 15, 11–14.

    Google Scholar 

  • Liu, H.-L, and R.G. Roble (2002), A study of a self-generated stratospheric sudden warming and its mesospheric-lower thermospheric impacts using the coupled TIME-GCM/CCM3, J. Geophys. Res. 107,D23, 4695, DOI: 10.1029/ 2001JD001533.

    Article  Google Scholar 

  • Matsuno, T. (1971), A dynamical model of the stratospheric sudden warming, J. Atmos. Sci. 28,8, 1479–1494, DOI: 10.1175/1520-0469(1971)028〈1479:ADMOTS〉2.0.CO;2.

    Article  Google Scholar 

  • Matthes, K., U. Langematz, L.L. Gray, K. Kodera, and K. Labitzke (2004), Improved 11-year solar signal in the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM), J. Geophys. Res. 109,D6, D06101, DOI: 10.1029/2003JD004012.

    Article  Google Scholar 

  • Mies, F.H. (1974), Calculated vibrational transition probabilities of OH(X 2Π), J. Mol. Spectrosc. 53,2, 150–188, DOI: 10.1016/0022-2852(74)90125-8.

    Article  Google Scholar 

  • Mulligan, F.J., M.E. Dyrland, F. Sigernes, and C.S. Deehr (2009), Inferring hydroxyl layer peak heights from ground-based measurements of OH(6-2) band integrated emission rate at Longyearbyen (78°N, 16°E), Ann. Geophys. 27,11, 4197–4205, DOI: 10.5194/angeo-27-4197-2009.

    Article  Google Scholar 

  • Myrabø, H.K. (1984), Temperature variation at mesopause levels during winter solstice at 78°N, Planet. Space Sci. 32,2, 249–255, DOI: 10.1016/0032-0633(84)90159-4.

    Article  Google Scholar 

  • Myrabø, H.K. (1986), Winter-season mesopause and lower thermosphere temperatures in the northern polar region, Planet. Space Sci. 34,11, 1023–1029, DOI: 10.1016/0032-0633(86)90012-7.

    Article  Google Scholar 

  • NASA (2012), Annual Meteorological Statistics, National Aeronautics Space Administration, http://acdb-ext.gsfc.nasa.gov/Data_services/met/ann_data.html, accessed October 2012.

    Google Scholar 

  • Nielsen, K.P., F. Sigernes, E. Raustein, and C.S. Deehr (2002), The 20-year change of the Svalbard OH-temperatures, Phys. Chem. Earth 27,6–8, 555–561, DOI: 10.1016/S1474-7065(02)00037-2.

    Article  Google Scholar 

  • Offermann, D., P. Hoffmann, P. Knieling, R. Koppmann, J. Oberheide, and W. Steinbrecht (2010), Long-term trends and solar cycle variations of mesospheric temperature and dynamics, J. Geophys. Res. 115,D18, D18127, DOI: 10.1029/2009JD013363.

    Article  Google Scholar 

  • Pendleton Jr., W.R., and M.J. Taylor (2002), The impact of L-uncoupling on Einstein coefficients for the OH Meinel (6,2) band: implications for Q-branch rotational temperatures, J. Atmos. Solar-Terr. Phys. 64,8–11, 971–983, DOI: 10.1016/S1364-6826(02)00051-2.

    Article  Google Scholar 

  • Perminov, V.I., A.I. Semenov, and N.N. Shefov (2007), On rotational temperature of the hydroxyl emission, Geomag. Aeron. 47,6, 756–763, DOI: 10.1134/ S0016793207060084.

    Article  Google Scholar 

  • Sigernes, F., N. Shumilov, C.S. Deehr, K.P. Nielsen, T. Svenøe, and O. Havnes (2003), Hydroxyl rotational temperature record from the auroral station in Adventdalen, Svalbard (78°N, 15°E), J. Geophys. Res. 108,A9, 1342, DOI: 10.1029/2001JA009023.

    Article  Google Scholar 

  • Sivjee, G.G., R.L. Walterscheid, J.H. Hecht, R.M. Hamwey, G. Schubert, and A.B. Christensen (1987), Effects of atmospheric disturbances on polar mesopause airglow OH emissions, J. Geophys. Res. 92,A7, 7651–7656, DOI: 10.1029/JA092iA07p07651.

    Article  Google Scholar 

  • Town, M.S., V.P. Walden, and S.G. Warren (2007), Cloud cover over the South Pole from visual observations, satellite retrievals, and surface-based infrared radiation measurements, J. Climate 20,3, 544–559, DOI: 10.1175/JCLI4005.1.

    Article  Google Scholar 

  • Turnbull, D.N., and R.P. Lowe (1989), New hydroxyl transition probabilities and their importance in airglow studies, Planet. Space Sci. 37,6, 723–738, DOI: 10.1016/0032-0633(89)90042-1.

    Article  Google Scholar 

  • Van der Loo, M.P., and G.C. Groenenboom (2007), Theoretical transition probabilities for the OH Meinel system, J. Chem. Phys. 126,11, 114314-1–114314-7, DOI: 10.1063/1.2646859.

    Google Scholar 

  • Viereck, R.A., and C.S. Deehr (1989), On the interaction between gravity waves and the OH Meinel (6-2) and the O2 atmospheric (0–1) bands in the polar night airglow, J. Geophys. Res. 94,A5, 5397–5404, DOI: 10.1029/JA094iA05p 05397.

    Article  Google Scholar 

  • Walterscheid, R.L., G.G. Sivjee, G. Schubert, and R.M. Hamwey (1986), Largeamplitude semidiurnal temperature variations in the polar mesopause: evidence of a pseudotide, Nature 324,7445, 347–349, DOI: 10.1038/324347a0.

    Article  Google Scholar 

  • Walterscheid, R.L., G. Schubert, and M.P. Hickey (1994), Comparison of theories for gravity wave induced fluctuations in airglow emissions, J. Geophys. Res. 99,A3, 3935–3944, DOI: 10.1029/93JA03312.

    Article  Google Scholar 

  • Walterscheid, R.L., G.G. Sivjee, and R.G. Roble (2000), Mesospheric and lower thermospheric manifestations of a stratospheric warming event over Eureka, Canada (80°N), Geophys. Res. Lett. 27,18, 2897–2900, DOI: 10.1029/2000GL003768.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silje E. Holmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmen, S.E., Dyrland, M.E. & Sigernes, F. Mesospheric temperatures derived from three decades of hydroxyl airglow measurements from Longyearbyen, Svalbard (78°N). Acta Geophys. 62, 302–315 (2014). https://doi.org/10.2478/s11600-013-0159-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-013-0159-4

Key words

Navigation