Skip to main content

Advertisement

Log in

Inclined lidar observations of boundary layer aerosol particles above the Kongsfjord, Svalbard

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

An inclined lidar with vertical resolution of 0.4 m was used for detailed boundary layer studies and to link observations at Zeppelin Mountain (474 m) and Ny-Ålesund, Svalbard. We report on the observation of aerosol layers directly above the Kongsfjord. On 29 April 2007, a layer of enhanced backscatter was observed in the lowest 25 m above the open water surface. The low depolarization ratio indicated spherical particles. In the afternoon, this layer disappeared. The ultrafine particle concentration at Zeppelin and Corbel station (close to the Kongsfjord) was low. On 1 May 2007, a drying process in the boundary layer was observed. In the morning, the atmosphere up to Zeppelin Mountain showed enhanced values of the backscatter coefficient. Around noon, the top of the highly reflecting boundary layer decreased from 350 to 250 m. The top of the boundary layer observed by lidar was confirmed by radiosonde data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1992), Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt. 31,33, 7113–7113, DOI: 10.1364/AO.31.007113.

    Article  Google Scholar 

  • Argentini, S., A.P. Viola, G. Mastrantonio, A. Maurizi, T. Georgiadis, and M. Nar- dino (2003), Characteristics of the boundary layer at Ny-Ålesund in the Arctic during the ARTIST field experiment, Ann. Geophys. 46,2, 185–196.

    Google Scholar 

  • Atkinson, B.W., and J.W. Zhang (1996), Mesoscale shallow convection in the atmosphere, Rev. Geophys. 34,4, 403–431, DOI: 10.1029/96RG02623.

    Article  Google Scholar 

  • Beesley, J.A., C.S. Bretherton, C. Jakob, E.L. Andreas, J.M. Intrieri, and T.A. Uttal (2000), A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp, J. Geophys. Res. 105,D10, 12337–12349, DOI: 10.1029/2000JD900079.

    Article  Google Scholar 

  • Beine, H.J., S. Argentini, A. Maurizi, G. Mastrantonio, and A. Viola (2001), The local wind field at Ny-Ålesund and the Zeppelin mountain at Svalbard, Meteorol. Atmos. Phys. 78,1–2, 107–113, DOI: 10.1007/s007030170009.

    Article  Google Scholar 

  • Brümmer, B., B. Busack, H. Hoeber, and G. Kruspe (1994), Boundary-layer observations over water and Arctic sea-ice during on-ice air flow, Bound.-Lay. Meteorol. 68,1–2, 75–108, DOI: 10.1007/BF00712665.

    Article  Google Scholar 

  • Campbell, J.R., D.L. Hlavka, E.J. Welton, C.J. Flynn, D.D. Turner, J.D. Spinhirne, V.S. Scott, and I.H. Hwang (2002), Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing, J. Atmos. Oceanic Technol. 19,4, 431–442, DOI: 10.1175/1520-0426(2002)019〈0431:FTESCA〉2.0.CO;2.

    Article  Google Scholar 

  • Curry, J.A., E.E. Ebert, and G.F. Herman (1988), Mean and turbulence structure of the summertime Arctic cloudy boundary layer, Q. J. Roy. Meteor. Soc. 114,481, 715–746, DOI: 10.1002/qj.49711448109.

    Article  Google Scholar 

  • Dare, R.A., and B.W. Atkinson (2000), Atmospheric response to spatial variations in concentration and size of polynyas in the Southern ocean sea-ice zone, Bound.-Lay. Meteorol. 94,1, 65–88, DOI: 10.1023/A:1002442212593.

    Article  Google Scholar 

  • Dörnbrack, A., I.S. Stachlewska, C. Ritter, and R. Neuber (2010), Aerosol distribution around Svalbard during intense easterly winds, Atmos. Chem. Phys. 10,4, 1473–1490, DOI: 10.5194/acp-10-1473-2010.

    Article  Google Scholar 

  • Fitzgerald, J.W. (1975), Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity, J. Appl. Meteor. 14,6, 1044–1049, DOI: 10.1175/1520-0450(1975)014〈1044:AFFTES〉2.0.CO;2.

    Article  Google Scholar 

  • Hoffmann, A., C. Ritter, M. Stock, M. Shiobara, A. Lampert, M. Maturilli, T. Orgis, R. Neuber, and A. Herber (2009), Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007, Atmos. Chem. Phys. 9,22, 9059–9081, DOI: 10.5194/acp-9-9059-2009.

    Article  Google Scholar 

  • Kilpeläinen, T., and A. Sjöblom (2010), Momentum and sensible heat exchange in an ice-free Arctic fjord, Bound.-Lay. Meteorol. 134,1, 109–130, DOI: 10.1007/s10546-009-9435-x.

    Article  Google Scholar 

  • Klett, J.D. (1985), Lidar inversion with variable backscatter/extinction ratios, Appl. Opt. 24,11, 1638–1643, DOI: 10.1364/AO.24.001638.

    Article  Google Scholar 

  • Kulmala, M., H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili, and P.H. McMurry (2004), Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci. 35,2, 143–176, DOI: 10.1016/j.jaerosci.2003.10.003.

    Article  Google Scholar 

  • Kupfer, H., A. Herber, and G. König-Langlo (2006), Radiation measurements and synoptic observations at Ny-Ålesund, Rep. Polar Res. 538, 75, http://epic.awi.de/Publications/Kup2006a.pdf.

    Google Scholar 

  • O’Dowd, C.D., and M.H. Smith (1993), Physicochemical properties of aerosols over the Northeast Atlantic: Evidence for wind-speed-related submicron sea-salt aerosol production, J. Geophys. Res. 98,D1, 1137–1149, DOI: 10.1029/ 92JD02302.

    Article  Google Scholar 

  • Pal, S.R., and A.I. Carswell (1973), Polarization properties of lidar backscattering from clouds, Appl. Opt. 12,7, 1530–1535, DOI: 10.1364/AO.12.001530.

    Article  Google Scholar 

  • Paluch, I.R., D.H. Lenschow, and Q. Wang (1997), Arctic boundary layer in the fall season over open and frozen sea, J. Geophys. Res. 102,D22, 25955–25971, DOI: 10.1029/97JD01563.

    Article  Google Scholar 

  • Ritter, C., A. Kirsche, and R. Neuber (2004), Tropospheric aerosol characterized by a Raman lidar over Spitsbergen. In: Proc. 22nd Int. Laser Radar Conference, ILRC2004, ESA SP-561, 459–462.

  • Sandvik, A.D., and B.R. Furevik (2002), Case study of a coastal jet at Spitsbergen — Comparison of SAR- and model-estimated wind, Mon. Wea. Rev. 130,4, 1040–1051, DOI: 10.1175/1520-0493(2002)130〈1040:CSOACJ〉2.0.CO;2.

    Article  Google Scholar 

  • Spinhirne, J.D. (1993), Micro pulse lidar, IEEE Trans. Geosci. Remote Sens. 31,1, 48–55, DOI: 10.1109/36.210443.

    Article  Google Scholar 

  • Stachlewska, I.S., R. Neuber, A. Lampert, C. Ritter, and G. Wehrle (2010), AMALi — the Airborne Mobile Aerosol Lidar for Arctic research, Atmos. Chem. Phys. 10,6, 2947–2963, DOI: 10.5194/acp-10-2947-2010.

    Article  Google Scholar 

  • Stone, R., A. Herber, V. Vitale, M. Mazzola, A. Lupi, R. Schnell, E. Dutton, P. Liu, S.-M. Li, K. Dethloff, A. Lampert, C. Ritter, M. Stock, R. Neuber, and M. Maturilli (2010), A three-dimensional characterization of Arctic aerosols from airborne Sun photometer observations; PAM-ARCMIP — April 2009, J. Geophys. Res. 115, D13203, DOI: 10.1029/2009JD013605.

    Article  Google Scholar 

  • Tjernström, M. (1999), Sensitivity of coastal atmospheric supercritical flow to ambient conditions, Tellus 55, 880–901.

    Google Scholar 

  • Tjernström, M. (2005), The summer arctic boundary layer during the Arctic Ocean Experiment 2001 (AOE-2001), Bound.-Lay. Meteorol. 117,1, 5–36, DOI: 10.1007/s10546-004-5641-8.

    Article  Google Scholar 

  • Tomasi, C., V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R.S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen- Huene, K. Stebel, G.H. Hansen, C.L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Ström, C. Toledano, V.E. Cachorro, P. Ortiz, A.M. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zieliński, T. Petelski, and T. Yamanouchi (2007), Aerosols in polar regions: A historical overview based on optical depth and in situ observations, J. Geophys. Res. 112, D16205, DOI: 10.1029/2007JD008432.

    Article  Google Scholar 

  • Treffeisen, R., P. Turnved, J. Ström, A. Herber, J. Bareiss, A. Helbig, R.S. Stone, W. Hoyningen-Huene, R. Krejci, A. Stohl, and R. Neuber (2007), Arctic smoke — aerosol characteristics during a record smoke event in the European Arctic and its radiative impact, Atmos. Chem. Phys. 7,11, 3035–3053, DOI: 10.5194/acp-7-3035-2007.

    Article  Google Scholar 

  • Vihma, T., J. Hartmann, and C. Lüpkes (2003), A case study of an on-ice air flow over the Arctic marginal sea-ice zone, Bound.-Lay. Meteorol. 107,1, 189–217, DOI: 10.1023/A:1021599601948.

    Article  Google Scholar 

  • Vogelmann, A.M., P.J. Flatau, M. Szczodrak, K.M. Markowicz, and P.J. Minnett (2003), Observations of large aerosol infrared forcing at the surface, Geophys. Res. Lett. 30, 1655, DOI: 10.1029/2002GL016829.

    Article  Google Scholar 

  • Welton, E.J., J.R. Campbell, J.D. Spinhirne, and V.S. Scott (2001), Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems, SPIE Proc. Ser. 4153, 151–158.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Lampert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampert, A., Ström, J., Ritter, C. et al. Inclined lidar observations of boundary layer aerosol particles above the Kongsfjord, Svalbard. Acta Geophys. 60, 1287–1307 (2012). https://doi.org/10.2478/s11600-011-0067-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-011-0067-4

Key words

Navigation