Skip to main content
Log in

An efficient gene deletion system for Bacillus thuringiensis

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

It is not easy to manipulate biosynthetic genes of Bacillus thuringiensis since there is a powerful methyl-specific restriction system in this microorganism. In this study, a PCR-based system was used to delete polyphosphate kinase gene (ppk) of Bacillus thuringiensis israelensis (Bti) by replacing the wild-type gene with a cassette containing the apramycin resistance gene as selectable marker. λ-Red was used to promote recombination in Escherichia coli between a PCR-amplified apramycin resistance cassette (linear deletion cassette selectable in E. coli and Bti) and Bti DNA on a plasmid. The isolated mutant plasmid was transferred to Bti by conjugation. Double cross-over transformants were screened for their antibiotic resistance and the mutation was proven by PCR, southern blot hybridization and RT-PCR. The described method, which uses the advantage of quick plasmid construction in E. coli and simple transformation of linear deletion cassette, is very useful to delete entire gene/genes of Bti without any polar effects on genes transcriptionally downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aac(3)IV :

aminoglycoside 3-N-acetyltransferase gene

Ap:

ampicilin

Apr:

apramycin

BHI:

brain heart infusion

Bti :

Bacillus thuringiensis subsp. israelensis

Chl:

chloramphenicol

Er:

erythromycin

ermB :

rRNA adenine N-6-methyltransferase gene

Kn:

kanamycin

LB:

Luria Bertani

ppk :

polyphosphate kinase gene

References

  • Abremski K., Hoess R. & Sternberg N. 1983. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32: 1301–1311.

    Article  PubMed  CAS  Google Scholar 

  • Arantes O. & Lereclus D. 1991. Construction of cloning vectors for Bacillus thuringiensis. Gene 108: 115–119.

    Article  PubMed  CAS  Google Scholar 

  • Bone J. & Ellar D.J. 1989. Transformation of Bacillus thuringiensis by electroporation. FEMS Microbiol. Lett. 58: 171–177.

    Article  CAS  Google Scholar 

  • Cherepanov P.P. & Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158: 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Crickmore N., Zeigler D.R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J. & Dean D.H. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807–813.

    PubMed  CAS  Google Scholar 

  • Datsenko K.A. & Wanner B.L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  • Delecluse A., Charles J.F., Klier A. & Rapoport G. 1991. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J. Bacteriol. 173: 3374–3381.

    PubMed  CAS  Google Scholar 

  • Fabret C., Ehrlich S.D. & Noirot P. 2002. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol. Microbiol. 46: 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Gust B., Challis G.L., Fowler K., Kieser T. & Chater K.F. 2003. PCR targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100: 1541–1546.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D. 1985. Techniques for transformation of E. coli, pp. 109–135. In: Glover D.M. (ed.), DNA Cloning: A Practical Approach, IRL Press, Oxford.

    Google Scholar 

  • Janes B.K. & Stibitz S. 2006. Routine markerless gene replacement in Bacillus anthracis. Infect. Immun. 74: 1949–1953.

    Article  PubMed  CAS  Google Scholar 

  • Klimowicz A.K., Benson T.A. & Handelsman J. 2010. A quadruple-enterotoxin-deficient mutant of Bacillus thuringiensis remains insecticidal. Microbiology 156: 3575–3583.

    Article  PubMed  CAS  Google Scholar 

  • MacNeil D.J., Gewain K.M., Ruby C.L., Dezeny G., Gibbons P.H. & MacNeil T. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Paget M.S.B., Chamberlin L., Atrih A., Foster S.J. & Buttner M.J. 1999. Evidence that the extracytoplasmic function sigma factor σ E is required for normal cell wall structure in Streptomyces coelicolor A3 (2). J. Bacteriol. 181: 204–211.

    PubMed  CAS  Google Scholar 

  • Poncet S., Anello G., Delecluse A., Klier A. & Rapoport G. 1993. Role of the CryIVD polypeptide in the overall toxicity of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 59: 3928–3930.

    PubMed  CAS  Google Scholar 

  • Salamitou S., Ramisse F., Brehelin M., Bourguet D., Gilois N., Gominet M., Hernandez E. & Lereclus D. 2000. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146: 2825–2832.

    PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Shevchuk N.A., Bryksin A.V., Nusinovich Y.A., Cabello F.C., Sutherland M. & Ladisch S. 2004. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res. 32: e19.

    Article  PubMed  Google Scholar 

  • Southern E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

    Article  PubMed  CAS  Google Scholar 

  • Sun W., Wang S. & Curtiss III R. 2008. Highly efficient method for introducing successive multiple scarless gene deletions and markerless gene insertions into the Yersinia pestis chromosome. Appl. Environ. Microbiol. 74: 4241–4245.

    Article  PubMed  CAS  Google Scholar 

  • Tunca S., Barreiro C., Coque J.J., Sola-Landa A. & Martin J.F. 2007. Transcriptional analysis of the iron regulation and desferrioxamine gene cluster of Streptomyces coelicolor A3(2). FEBS J. 274: 1110–1122.

    Article  PubMed  CAS  Google Scholar 

  • Uzzau S., Figueroa-Bossi N., Rubino S. & Bossi L. 2001. Epitope tagging of chromosomal genes in Salmonella. Proc.Natl. Acad. Sci. USA 98: 15264–15269.

    Article  PubMed  CAS  Google Scholar 

  • Vagner V., Dervyn E. & Ehrlich S.D. 1998. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144: 3097–3104.

    Article  PubMed  CAS  Google Scholar 

  • Xin Y., Yu H.J., Hong Q. & Li S.P. 2008. Cre/lox system and PCR based genome engineering in Bacillus subtilis. Appl. Environ. Microbiol. 74: 5556–5562.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sedef Tunca Gedik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doruk, T., Gedik, S.T. An efficient gene deletion system for Bacillus thuringiensis . Biologia 68, 358–364 (2013). https://doi.org/10.2478/s11756-013-0184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0184-4

Key words

Navigation