Skip to main content

Advertisement

Log in

Hemocytes/coelomocytes DNA content in five marine invertebrates: cell cycles and genome sizes

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The hemocytes/coelomocytes DNA content in five selected marine invertebrates (sea mouse Aphrodita aculeata, spiny crab Maja crispata, sea star Echinaster sepositus, sea urchin Paracentrotus lividus, and tunicate Phallusia mammillata) was investigated by flow cytometry. The cell cycle analyses identified sea mouse coelomocytes as proliferating cells and revealed that spiny crab hemocytes and sea urchin coelomocytes complete their division in the hemolymph and coelom, respectively. The genome sizes of sea mouse and spiny crab are reported for the first time. The diploid DNA content (2C) in sea mouse A. aculeate was 1.24 pg, spiny crab M. crispata 7.76 pg, red starfish E. sepositus 1.52 pg and sea urchin P. lividus 1.08 pg. The mean diploid DNA content in tunicate P. mammillata was 0.11 pg with a high interindividual variability (45%). The presented results provide a useful database for future studies in the field of invertebrate physiology, ecotoxicology, biodiversity, species conservation and phylogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-diamidino-2-phenylindole

FSC:

forward scatter fluorescence

FL6:

DAPI fluorescence

GS:

genome size

References

  • Bachmann K. & Rheinsmith E.L. 1973. Nuclear DNA amounts in Pacific Crustacea. Chromosoma 43: 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Bennett M.D. 1987. Variation in genomic form in plants and its ecological implications. New Phytol. 106: 177–200.

    Google Scholar 

  • Bihari N. & FafanÄ‘el M. 2004. Interspecies differences in DNA single strand breaks caused by benzo(a)pyrene and marine environment. Mutat. Res. 552: 209–217.

    PubMed  CAS  Google Scholar 

  • Bihari N., MiÄŤić M., Batel R. & Zahn R.K. 2003. Flow cytometric detection of DNA cell cycle alterations of hemocyte of mussels (Mytilus galloprovincialis) off the Adriatic coast, Croatia. Aquat. Toxicol. 64: 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Bossche J.P. & Jangoux M. 1976. Epithelial origin of starfish coelomocytes. Nature 261: 227–228.

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T. 1985. The evolution of genome size. John Wiley and Sons, New York.

    Google Scholar 

  • Chia F.S. & Xing J. 1996. Echinoderm coelomocytes. Zool. Stud. 35: 231–254.

    Google Scholar 

  • Conner W.G., Hinegardner R. & Bachamann K. 1972. Nuclear DNA amounts in polychaete annelides. Experientia 28: 1502–1504.

    Article  CAS  Google Scholar 

  • Cossarizza A., Pinti M., Troiano L. & Cooper E.L. 2005. Flow cytometry as a tool for analysing invertebrate cells. Invertebr. Surv. J. 2: 32–40.

    Google Scholar 

  • Coteur G., DeBecker G., Warnau M., Jangoux M. & Dubois P. 2002. Differentiation of immune cells challenged by bacteria in the common Europian starfish, Asterias rubens (Echinodermata). Eur. J. Cell Biol. 81: 413–418.

    Article  PubMed  Google Scholar 

  • Elston R.A., Drum A.S. & Allen S.K. Jr 1990. Progressive development of circulating polyploid cells in Mytilus with haemic neoplasia. Dis. Aquat. Org. 8: 51–59.

    Article  Google Scholar 

  • Factor J.R. (ed.) 1995. Biology of the Lobster: Homarus americanus. Academic Press, San Diego.

    Google Scholar 

  • Gambi M.C., Ramella L., Sella G., Protto P. & Aldieri E. 1997. Variation in genome size of benthic polychaetes: systematic and ecological relationships. J. Mar. Biol. Ass. U.K. 77: 1045–1057.

    Article  Google Scholar 

  • Gold J.R. & Price H.J. 1987. Genome size variation in North American minnows (Cyprinidae) I. Distribution of the variation in five species. Heredity 54: 197–305.

    Google Scholar 

  • Greenberg S.S. 1989. Immunity and Survival. Human Sciences Press, New York.

    Google Scholar 

  • Gregory T.R. 2008. Animal Genome Size Database. http://www.genomesize.com/.

  • Hinegardner R. 1974. Cellular DNA content of the Echinodermata. Comp. Biochem. Physiol. 49B: 219–226.

    Google Scholar 

  • Holland N.D., Phillips J.H. & Giese AC 1965. An autographic investigation of coelomocyte production in the purple sea urchin (Strongylocentrotus purpuratus). Biol. Bull. 128: 259–270.

    Article  Google Scholar 

  • Homa J., Bzowska M., Klimek M. & Plytycz B. 2008. Flow cytometric quantification of proliferating coelomocytes non-invasively retrieved from earthworm Dendrobaena veneta. Develop. Comp. Immunol. 32: 9–14.

    Google Scholar 

  • Jeffery W.R. 2002. Ascidian gene-expression profiles. Genome Biol. 3: 1030.1–1030.4.

    Article  Google Scholar 

  • Matranga V., Toia G., Bonaventura R. & MĂĽller W.E.G. 2000. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperones 5: 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Nardi J.B., Pilas B., Ujhelyi E., Garsha K. & Kanost M.R. 2003. Hematopoietic organs of Manduca sexta and hemocyte lineages. Dev. Genes. Evol. 213: 477–491.

    Article  PubMed  Google Scholar 

  • Radford J.L., Hutchinson A.E., Burandt M. & Raftos D.A. 2000. Effects of metal-based environmental pollutants on tunicate hemocytes. J. Invertebr. Pathol. 76: 242–248.

    Article  PubMed  CAS  Google Scholar 

  • Rheinsmith E.L., Hinegardner R. & Bachmann K. 1974. Nuclear DNA amounts in Crustacea. Comp. Biochem. Physiol. 48B: 343–348.

    Google Scholar 

  • RodrĂ­guez-JuĂ­z A.M., Torrado M. & MĂ©ndez J. 1996. Genomesize variation in bivalve molluscs determined by flow cytometry. Mar. Biol. 126: 489–497.

    Article  Google Scholar 

  • Schreiber A., StĂĽrenberg F. & Storch V. 1994. DNA content in blood cells of Halicryptus spinulosus, a species of the phylum Priapulida. Naturwissenschaften 80: 455–456.

    Article  Google Scholar 

  • Sessions S.K. & Larson A. 1987. Developmental correlates of genome size in plethodontid salamanders and their implications for genome size. Evolution 41: 1239–1251.

    Article  Google Scholar 

  • Smith V.J. 1981. The echinoderms, pp. 513–562. In: Ratcliffe N.A. & Rowley A.F. (eds), Invertebrate Blood Cells, Academic Press, London.

    Google Scholar 

  • Tiersch T.R. & Wachtel S.S. 1993. Sources of error in screening by flow cytometry for the effects of environmental mutagens. Environ. Toxicol. Chem. 12: 37–42.

    Article  CAS  Google Scholar 

  • Vaughn J.C. 1975. DNA reassociation kinetics and chromosome structure in the crabs Cancer borealis and Libinia emarginata. Chromosoma 50: 243–257.

    Article  PubMed  CAS  Google Scholar 

  • White M.J.D. 1961. The Chromosomes. John Wiley and Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Fafanđel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fafanđel, M., Bihari, N., Smodlaka, M. et al. Hemocytes/coelomocytes DNA content in five marine invertebrates: cell cycles and genome sizes. Biologia 63, 730–736 (2008). https://doi.org/10.2478/s11756-008-0127-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0127-7

Key words

Navigation