Skip to main content
Log in

K-quasiderivations

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

A K-quasiderivation is a map which satisfies both the Product Rule and the Chain Rule. In this paper, we discuss several interesting families of K-quasiderivations. We first classify all K-quasiderivations on the ring of polynomials in one variable over an arbitrary commutative ring R with unity, thereby extending a previous result. In particular, we show that any such K-quasiderivation must be linear over R. We then discuss two previously undiscovered collections of (mostly) nonlinear K-quasiderivations on the set of functions defined on some subset of a field. Over the reals, our constructions yield a one-parameter family of K-quasiderivations which includes the ordinary derivative as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler I., Composition rings, Duke Math. J., 1962, 29(4), 607–623

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbeau E.J., Remarks on an arithmetic derivative, Canad. Math. Bull., 1961, 4, 117–122

    Article  MathSciNet  MATH  Google Scholar 

  3. Emmons C., Krebs M., Shaheen A., How to differentiate an integer modulo n, College Math. J., 2009, 40(5), 345–353

    Article  MathSciNet  Google Scholar 

  4. Fechter T., Exploring the Derivative of a Natural Number Using the Logarithmic Derivative, Senior Capstone thesis, Pacific University, 2007

  5. Gleason A.M., Greenwood R.E., Kelly L.M. (Eds.), The William Lowell Putnam Mathematical Competition. Problems and Solutions: 1938–1964, Mathematical Association of America, Washington, 1980

    MATH  Google Scholar 

  6. Kautschitsch H., Müller W.B., Über die Kettenregel in A [x 1,...x n], A (x 1...x n) und A [[x 1,...x n]], In: Contributions to General Algebra, 1, Klagenfurt, May 25–28, 1978, Johannes Heyn, Klagenfurt, 1979, 131–136

    Google Scholar 

  7. Lausch H., Nöbauer W., Algebra of Polynomials, North-Holland Math. Library, 5, North-Holland, Amsterdam-London, 1973

    Google Scholar 

  8. Menger K., General algebra of analysis, Reports of Mathematical Colloquium, 1946, 7, 46–60

    MathSciNet  Google Scholar 

  9. Müller W., Eindeutige Abbildungen mit Summen-, Produkt- und Kettenregel im Polynomring, Monatsh. Math., 1969, 73(4), 354–367

    Article  MathSciNet  MATH  Google Scholar 

  10. Müller W.B., The algebra of derivations, An. Acad. Brasil. Ciênc., 1973, 45, 339–343 (in Spanish)

    Google Scholar 

  11. Müller W.B., Differentiations-Kompositionsringe, Acta Sci. Math. (Szeged), 1978, 40(1–2), 157–161

    MathSciNet  MATH  Google Scholar 

  12. Müller W.B., Über die Kettenregel in Fastringen, Abh. Math. Sem. Univ. Hamburg, 1979, 48(1), 108–111

    Article  MathSciNet  MATH  Google Scholar 

  13. Nöbauer W., Derivationssysteme mit Kettenregel, Monatsh. Math., 1963, 67(1), 36–49

    Article  MathSciNet  MATH  Google Scholar 

  14. Stay M., Generalized number derivatives, J. Integer Seq., 2005, 8(1), #05.1.4

  15. Ufnarovski V., Ahlander B., How to differentiate a number, J. Integer Seq., 2003, 6(3), #03.3.4

  16. Westrick L., Investigations of the number derivative, preprint available at http://www.plouffe.fr/simon/OEIS/archive_in_pdf/intmain.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Krebs.

About this article

Cite this article

Emmons, C., Krebs, M. & Shaheen, A. K-quasiderivations. centr.eur.j.math. 10, 824–834 (2012). https://doi.org/10.2478/s11533-011-0140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-011-0140-x

MSC

Keywords

Navigation