Skip to main content
Log in

Boiled or Filtered Coffee?

Effects of Coffee and Caffeine on Cholesterol, Fibrinogen and C-Reactive Protein

  • Review Article
  • Published:
Toxicological Reviews

Abstract

Caffeine is the most widely consumed psychostimulant drug in the world that mostly is consumed in the form of coffee. Whether caffeine and/or coffee consumption contribute to the development of cardiovascular disease (CVD), the single leading cause of death in the US, is unclear.

This article examines the effects of caffeine intake, both alone and via coffee consumption, on key blood markers of CVD risk: lipoproteins (cholesterol, triglycerides), fibrinogen (a biomarker of blood clotting) and C-reactive protein (CRP; a biomarker of inflammation). These blood markers and their role in the development of CVD are reviewed first. Studies examining caffeine and coffee effects on each of these blood markers are then presented. Next, biobehavioural moderators of the relationship between caffeine and/or coffee consumption and CVD are discussed, including genetics, sex and tobacco smoking.

The literature indicates a strong relationship between boiled, unfiltered coffee consumption and elevated cholesterol levels; however, there is a critical gap in the literature regarding the effects of coffee or caffeine consumption on fibrinogen or CRP, which is an independent predictor of CVD risk. Available studies are limited by small samples sizes, inclusion of only men (or few women) and unrepresented age or ethnic groups. Thiere is a critical need for controlled laboratory and epidemiological studies that include fibrinogen and CRP markers of CVD risk before conclusions can be drawn regarding the health effects of caffeine and/or coffee in a normal, healthy population of men and women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chou T. Wake up and smell the coffee: caffeine, coffee, and the medical consequences. West J Med 1992; 157(5): 544–53

    PubMed  CAS  Google Scholar 

  2. James JE. Understanding caffeine: a biobehavioral analysis. Thousand Oaks (CA): Sage Publications, 1997

    Google Scholar 

  3. Chou TM, Benowitz NL. Caffeine and coffee: effects on health and cardiovascular disease. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 1994; 109(2): 173–89

    PubMed  CAS  Google Scholar 

  4. Kawachi I, Colditz GA, Stone CB. Does coffee drinking increase the risk of coronary heart disease? Results from a meta-analysis. Br Heart J 1994; 72(3): 269–75

    PubMed  CAS  Google Scholar 

  5. Curatolo PW, Robertson D. The health consequences of caffeine. Ann Intern Med 1983; 98 (5 Pt 1): 641–53

    PubMed  CAS  Google Scholar 

  6. Garattini S, Tognoni G. Drug utilisation review and pharmacoeconomics: interaction after parallel development? Pharmacoeconomics 1993; 4(3): 162–72

    PubMed  CAS  Google Scholar 

  7. Hinds TS, West WL, Knight EM, et al. The effect of caffeine on pregnancy outcome variables. Nutr Rev 1996; 54(7): 203–7

    PubMed  CAS  Google Scholar 

  8. Klesges RC, Ray JW, Klesges LM. Caffeinated coffee and tea intake and its relationship to cigarette smoking: an analysis of the Second National Health and Nutrition Examination Survey (NHANES II). J Subst Abuse 1994; 6(4): 407–18

    PubMed  CAS  Google Scholar 

  9. Patton GC, Hibbert M, Rosier MJ, et al. Patterns of common drug use in teenagers. Aust J Public Health 1995; 19(4): 393–9

    PubMed  CAS  Google Scholar 

  10. Hartley TR, Lovallo WR, Whitsett TL, et al. Caffeine and stress: implications for risk, assessment, and management of hypertension. J Clin Hypertens 2001; 3(6): 354–61

    CAS  Google Scholar 

  11. American Heart Association. About cholesterol [online]. Available from URL: http://www.americanheart.org [Accessed 2003 Dec 2]

  12. Bronte-Stewart B, Keys A, Brock JF. Serum-cholesterol, diet, and coronary heart-disease: an inter-racial survey in the Cape Peninsula. Lancet 1955; 269(6900): 1103–8

    PubMed  CAS  Google Scholar 

  13. Heiss G, Johnson NJ, Reiland S, et al. The epidemiology of plasma high-density lipoprotein cholesterol levels: the Lipid Research Clinics Program Prevalence Study. Circulation 1980; 62 (4 Pt 2): IV116–36

    PubMed  CAS  Google Scholar 

  14. Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988; 260(5): 641–51

    PubMed  CAS  Google Scholar 

  15. Gordon T, Castelli WP, Hjortland MC, et al. High density lipoprotein as a protective factor against coronary heart disease: the Framingham Study. Am J Med 1977; 62(5): 707–14

    PubMed  CAS  Google Scholar 

  16. Miller NE, Thelle DS, Forde OH, et al. The Tromso Heart Study: high-density lipoprotein and coronary heart-disease: a prospective case-control study. Lancet 1977; I(8019): 965–8

    Google Scholar 

  17. Rhoads GG, Gulbrandsen CL, Kagan A. Serum lipoproteins and coronary heart disease in a population study of Hawaii Japanese men. N Engl J Med 1976; 294(6): 293–8

    PubMed  CAS  Google Scholar 

  18. McCullough PA, Sandberg KR, Dumler F, et al. Determinants of coronary vascular calcification in patients with chronic kidney disease and end-stage renal disease: a systematic review. J Nephrol 2004; 17(2): 205–15

    PubMed  Google Scholar 

  19. Onat A. Lipids, lipoproteins and apolipoproteins among Turks, and impact on coronary heart disease. Anadolu Kardiyol Derg 2004; 4(3): 236–45

    PubMed  Google Scholar 

  20. Lindeberg S, Ahren B, Nilsson A, et al. Determinants of serum triglycerides and high-density lipoprotein cholesterol in traditional Trobriand Islanders: the Kitava Study. Scand J Clin Lab Invest 2003; 63(3): 175–80

    PubMed  CAS  Google Scholar 

  21. Jacobsen BK, Thelle DS. The Tromso Heart Study: food habits, serum total cholesterol, HDL cholesterol, and triglycerides. Am J Epidemiol 1987; 125(4): 622–30

    PubMed  CAS  Google Scholar 

  22. Mukamal KJ. Alcohol use and prognosis in patients with coronary heart disease. Prev Cardiol 2003; 6(2): 93–8

    PubMed  Google Scholar 

  23. Heinrich J, Balleisen L, Schulte H, et al. Fibrinogen and factor VII in the prediction of coronary risk: results from the PROCAM study in healthy men. Arterioscler Thromb 1994; 14(1): 54–9

    PubMed  CAS  Google Scholar 

  24. Kannel WB, Wolf PA, Castelli WP, et al. Fibrinogen and risk of cardiovascular disease: the Framingham Study. JAMA 1987; 258(9): 1183–6

    PubMed  CAS  Google Scholar 

  25. Lowe GD, Rumley A, Mackie IJ. Plasma fibrinogen. Ann Clin Biochem 2004; 41 (Pt 6): 430–40

    PubMed  CAS  Google Scholar 

  26. Markowe HL, Matrai A, Baumann M. Fibrinogen: a possible link between social class and coronary heart disease. BMJ (Clin Res Ed) 1985; 291(6505): 1312–4

    CAS  Google Scholar 

  27. Obradovic S, Obradovic D, Gligic B, et al. Fibrinogen as a risk factor in ischemic heart disease [in Serbian]. Vojnosanit Pregl 2003; 60(3): 315–20

    PubMed  Google Scholar 

  28. Stec JJ, Silbershatz H, Tofler GH, et al. Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population. Circulation 2000; 102(14): 1634–8

    PubMed  CAS  Google Scholar 

  29. Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, et al. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984; 311(8): 501–5

    PubMed  CAS  Google Scholar 

  30. Meade TW, Ruddock V, Stirling Y, et al. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet 1993; 342(8879): 1076–9

    PubMed  CAS  Google Scholar 

  31. Yarnell JW, Baker IA, Sweetnam PM, et al. Fibrinogen, viscosity, and white blood cell count are major risk factors for ischemic heart disease: the Caerphilly and Speedwell collaborative heart disease studies. Circulation 1991; 83(3): 836–44

    PubMed  CAS  Google Scholar 

  32. Brunner E, Davey Smith G, Marmot M, et al. Childhood social circumstances and psychosocial and behavioural factors as determinants of plasma fibrinogen. Lancet 1996; 347(9007): 1008–13

    PubMed  CAS  Google Scholar 

  33. Ridker PM, Buring JE, Cook NR, et al. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 2003; 107(3): 391–7

    PubMed  Google Scholar 

  34. Benzaquen LR, Yu H, Rifai N. High sensitivity C-reactive protein: an emerging role in cardiovascular risk assessment. Crit Rev Clin Lab Sci 2002; 39(4-5): 459–97

    PubMed  CAS  Google Scholar 

  35. Rifai N, Ridker PM. Inflammatory markers and coronary heart disease. Curr Opin Lipidol 2002; 13(4): 383–9

    PubMed  CAS  Google Scholar 

  36. Roberts WL, Schwarz EL, Ayanian S, et al. Performance characteristics of a point of care C-reactive protein assay. Clin Chim Acta 2001; 314(1-2): 255–9

    PubMed  CAS  Google Scholar 

  37. Ridker PM, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347(20): 1557–65

    PubMed  CAS  Google Scholar 

  38. Cao JJ, Thach C, Manolio TA, et al. C-reactive protein, carotid intima-media thickness, and incidence of ischemic stroke in the elderly: the Cardiovascular Health Study. Circulation 2003; 108(2): 166–70

    PubMed  CAS  Google Scholar 

  39. Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004; 350(14): 1387–97

    PubMed  CAS  Google Scholar 

  40. Erlinger TP, Miller ER, Charleston J, et al. Inflammation modifies the effects of a reduced-fat low-cholesterol diet on lipids: results from the DASH-sodium trial. Circulation 2003; 108(2): 150–4

    PubMed  Google Scholar 

  41. Fears R. The hypercholesterolaemic effect of caffeine in rats fed on diets with and without supplementary cholesterol. Br J Nutr 1978; 39(2): 363–74

    PubMed  CAS  Google Scholar 

  42. Bellet S, Kershbaum A, Finck EM. Response of free fatty acids to coffee and caffeine. Metabolism 1968; 17(8): 702–7

    PubMed  CAS  Google Scholar 

  43. Callahan MM, Rohovsky MW, Robertson RS, et al. The effect of coffee consumption on plasma lipids, lipoproteins, and the development of aortic atherosclerosis in rhesus monkeys fed an atherogenic diet. Am J Clin Nutr 1979; 32(4): 834–45

    PubMed  CAS  Google Scholar 

  44. Steinke J. Coffee drinking and acute myocardial infarction. Lancet 1973; I(7797): 258

    Google Scholar 

  45. Thelle DS, Arnesen E, Forde OH. The Tromso Heart Study: does coffee raise serum cholesterol? N Engl J Med 1983; 308(24): 1454–7

    PubMed  CAS  Google Scholar 

  46. Kreisberg RA, Kasim S. Cholesterol metabolism and aging. Am J Med 1987; 82(1B): 54–60

    PubMed  CAS  Google Scholar 

  47. Heiss G, Tamir I, Davis CE, et al. Lipoprotein-cholesterol distributions in selected North American populations: the lipid research clinics program prevalence study. Circulation 1980; 61(2): 302–15

    PubMed  CAS  Google Scholar 

  48. Kohlmeier L, Mensink G, Kohlmeier M. The relationship between coffee consumption and lipid levels in young and older people in the Heidelberg-Michelstadt-Berlin Study. Eur Heart J 1991; 12(8): 869–74

    PubMed  CAS  Google Scholar 

  49. Jossa F, Krogh V, Farinaro E, et al. Coffee and serum lipids: findings from the Olivetti Heart Study. Ann Epidemiol 1993; 3(3): 250–5

    PubMed  CAS  Google Scholar 

  50. Jossa F, Trevisan M, Krogh V, et al. Correlates of high-density lipoprotein cholesterol in a sample of healthy workers. Prev Med 1991; 20(6): 700–12

    PubMed  CAS  Google Scholar 

  51. Thelle DS. Coffee and cholesterol: what is brewing? J Intern Med 1991; 230(4): 289–91

    PubMed  CAS  Google Scholar 

  52. Bak AA, Grobbee DE. The effect on serum cholesterol levels of coffee brewed by filtering or boiling. N Engl J Med 1989; 321(21): 1432–7

    PubMed  CAS  Google Scholar 

  53. Zock PL, Katan MB, Merkus MP, et al. Effect of a lipid-rich fraction from boiled coffee on serum cholesterol. Lancet 1990; 335(8700): 1235–7

    PubMed  CAS  Google Scholar 

  54. van Dusseldorp M, Katan MB, Demacker PN. Effect of decaffeinated versus regular coffee on serum lipoproteins: a 12-week double-blind trial. Am J Epidemiol 1990; 132(1): 33–40

    PubMed  Google Scholar 

  55. Hryniewiecki L, Hasik J, Grzymislawski M, et al. The effect of coffee deprived of irritant substances upon some indices of lipid metabolism in healthy volunteers and patients with hyperlipoproteinemia. Mater Med Pol 1992; 24(3): 151–2

    PubMed  CAS  Google Scholar 

  56. Strandhagen E, Thelle DS. Filtered coffee raises serum cholesterol: results from a controlled study. Eur J Clin Nutr 2003; 57(9): 1164–8

    PubMed  CAS  Google Scholar 

  57. Ratnayake WM, Hollywood R, O’Grady E, et al. Lipid content and composition of coffee brews prepared by different methods. Food Chem Toxicol 1993; 31(4): 263–9

    PubMed  CAS  Google Scholar 

  58. van Dusseldorp M, Katan MB, van Vliet T, et al. Cholesterol-raising factor from boiled coffee does not pass a paper filter. Arterioscler Thromb 1991; 11(3): 586–93

    PubMed  Google Scholar 

  59. Fried RE, Levine DM, Kwiterovich PO, et al. The effect of filtered-coffee consumption on plasma lipid levels: results of a randomized clinical trial. JAMA 1992; 267(6): 811–5

    PubMed  CAS  Google Scholar 

  60. Christensen B, Mosdol A, Retterstol L, et al. Abstention from filtered coffee reduces the concentrations of plasma homocysteine and serum cholesterol: a randomized controlled trial. Am J Clin Nutr 2001; 74(3): 302–7

    PubMed  CAS  Google Scholar 

  61. Bak AA, Grobbee DE. Caffeine, blood pressure, and serum lipids. Am J Clin Nutr 1991; 53(4): 971–5

    PubMed  CAS  Google Scholar 

  62. Wahrburg U, Martin H, Schulte H, et al. Effects of two kinds of decaffeinated coffee on serum lipid profiles in healthy young adults. Eur J Clin Nutr 1994; 48(3): 172–9

    PubMed  CAS  Google Scholar 

  63. Mensink RP, Zock PL, Katan MB, et al. Boiled coffee does not increase serum cholesterol in gerbils and hamsters. Z Ernahrungswiss 1992; 31(1): 82–5

    PubMed  CAS  Google Scholar 

  64. Terpstra AH, Katan MB, Weusten-van der Wouw MP, et al. Coffee oil consumption does not affect serum cholesterol in rhesus and cebus monkeys. J Nutr 1995; 125(9): 2301–6

    PubMed  CAS  Google Scholar 

  65. Beynen AC, Weusten-van der Wouw MP, de Roos B, et al. Boiled coffee fails to raise serum cholesterol in hamsters and rats. Br J Nutr 1996; 76(5): 755–64

    PubMed  CAS  Google Scholar 

  66. de Roos B, Sawyer JK, Katan MB, et al. Validity of animal models for the cholesterol-raising effects of coffee diterpenes in human subjects. Proc Nutr Soc 1999; 58(3): 551–7

    PubMed  Google Scholar 

  67. Urgert R, Essed N, van der Weg G, et al. Separate effects of the coffee diterpenes cafestol and kahweol on serum lipids and liver aminotransferases. Am J Clin Nutr 1997; 65(2): 519–24

    PubMed  CAS  Google Scholar 

  68. Weusten-van der Wouw MP, Katan MB, Viani R, et al. Identity of the cholesterol-raising factor from boiled coffee and its effects on liver function enzymes. J Lipid Res 1994; 35: 721–33

    PubMed  CAS  Google Scholar 

  69. Urgert R, Meyboom S, Kuilman M, et al. Comparison of effect of cafetiere and filtered coffee on serum concentrations of liver aminotransferases and lipids: six month randomised controlled trial. BMJ 1996; 313(7069): 1362–6

    PubMed  CAS  Google Scholar 

  70. Dahlen GH. Lp (a) lipoprotein in cardiovascular disease. Atherosclerosis 1994; 108(2): 111–26

    PubMed  CAS  Google Scholar 

  71. Rader DJ, Cain W, Zech LA, et al. Variation in lipoprotein (a) concentrations among individuals with the same apolipoprotein (a) isoform is determined by the rate of lipoprotein (a) production. J Clin Invest 1993; 91(2): 443–7

    PubMed  CAS  Google Scholar 

  72. Urgert R, Weusten-van der Wouw MP, Hovenier R, et al. Chronic consumers of boiled coffee have elevated serum levels of lipoprotein (a). J Intern Med 1996; 240(6): 367–71

    PubMed  CAS  Google Scholar 

  73. Urgert R, Weusten-van der Wouw MP, Hovenier R, et al. Diterpenes from coffee beans decrease serum levels of lipoprotein (a) in humans: results from four randomised controlled trials. Eur J Clin Nutr 1997; 51(7): 431–6

    PubMed  CAS  Google Scholar 

  74. Urgert R, Katan MB. The cholesterol-raising factor from coffee beans. J R Soc Med 1996; 89(11): 618–23

    PubMed  CAS  Google Scholar 

  75. van Tol A, Urgert R, de Jong-Caesar R, et al. The cholesterol-raising diterpenes from coffee beans increase serum lipid transfer protein activity levels in humans. Atherosclerosis 1997; 132(2): 251–4

    PubMed  Google Scholar 

  76. Tall A. Plasma lipid transfer proteins. Annu Rev Biochem 1995; 64: 235–57

    PubMed  CAS  Google Scholar 

  77. Lusa S, Jauhiainen M, Metso J, et al. The mechanism of human plasma phospholipid transfer protein-induced enlargement of high-density lipoprotein particles: evidence for particle fusion. Biochem J 1996; 313 (Pt 1): 275–82

    PubMed  CAS  Google Scholar 

  78. de Roos B, Van Tol A, Urgert R, et al. Consumption of French-press coffee raises cholesteryl ester transfer protein activity levels before LDL cholesterol in normolipidaemic subjects. J Intern Med 2000; 248(3): 211–6

    PubMed  Google Scholar 

  79. al’Absi M, Lovallo WR, McKey B, et al. Hypothalamic-pituitary-adrenocortical responses to psychological stress and caffeine in men at high and low risk for hypertension. Psychosom Med 1998; 60(4): 521–7

    PubMed  Google Scholar 

  80. Plomin R. Behavioral genetics in the postgenomic era. Washington, DC: American Psychological Association, 2003

    Google Scholar 

  81. Boekschoten MV, Engberink MF, Katan MB, et al. Reproducibility of the serum lipid response to coffee oil in healthy volunteers. Nutr J 2003; 2(1): 8

    PubMed  Google Scholar 

  82. Prothro JW, Rosenbloom CA. Description of a mixed ethnic, elderly population II: food group behavior and related nonfood characteristics. J Gerontol A Biol Sci Med Sci 1999; 54(6): M325–8

    PubMed  CAS  Google Scholar 

  83. Cook BB, Treiber FA, Mensah G, et al. Family history of hypertension and left ventricular mass in youth: possible mediating parameters. Am J Hypertens 2001; 14 (4 Pt 1): 351–6

    PubMed  CAS  Google Scholar 

  84. Lauer RM, Clarke WR. Childhood risk factors for high adult blood pressure: the Muscatine Study. Pediatrics 1989; 84(4): 633–41

    PubMed  CAS  Google Scholar 

  85. Galderisi M, Celentano A, Tammaro P, et al. Ambulatory blood pressure monitoring in offspring of hypertensive patients: relation to left ventricular structure and function. Am J Hypertens 1993; 6(2): 114–20

    PubMed  CAS  Google Scholar 

  86. Munger RG, Prineas RJ, Gomez-Marin O. Persistent elevation of blood pressure among children with a family history of hypertension: the Minneapolis Children’s Blood Pressure Study. J Hypertens 1988; 6(8): 647–53

    PubMed  CAS  Google Scholar 

  87. Radice M, Alli C, Avanzini F, et al. Left ventricular structure and function in normotensive adolescents with a genetic predisposition to hypertension. Am Heart J 1986; 111(1): 115–20

    PubMed  CAS  Google Scholar 

  88. Celentano A, Galderisi M, Garofalo M, et al. Blood pressure and cardiac morphology in young children of hypertensive subjects. J Hypertens 1988; 6(4 Suppl.): S107–9

    CAS  Google Scholar 

  89. al’Absi M, Wittmers LE. Enhanced adrenocortical responses to stress in hypertension-prone men and women. Ann Behav Med 2003; 25(1): 25–33

    PubMed  Google Scholar 

  90. Weggemans RM, Zock PL, Urgert R, et al. Differences between men and women in the response of serum cholesterol to dietary changes. Eur J Clin Invest 1999; 29(10): 827–34

    PubMed  CAS  Google Scholar 

  91. el Shabrawy Ali M, Felimban FM. A study of the impact of Arabic coffee consumption on serum cholesterol. J R Soc Health 1993; 113(6): 288–91

    PubMed  CAS  Google Scholar 

  92. Hertog MG, Feskens EJ, Hollman PC, et al. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 1993; 342(8878): 1007–11

    PubMed  CAS  Google Scholar 

  93. Parsons WD, Neims AH. Effect of smoking on caffeine clearance. Clin Pharmacol Ther 1978; 24(1): 40–5

    PubMed  CAS  Google Scholar 

  94. Kozlowski LT, Henningfield JE, Keenan RM, et al. Patterns of alcohol, cigarette, and caffeine and other drug use in two drug abusing populations. J Subst Abuse Treat 1993; 10(2): 171–9

    PubMed  CAS  Google Scholar 

  95. Mensink GB, Kohlmeier L, Rehm J, et al. The relationship between coffee consumption and serum cholesterol under consideration of smoking history. Eur J Epidemiol 1993; 9(2): 140–50

    PubMed  CAS  Google Scholar 

  96. Happonen P, Salonen JT, Seppanen K. Association of coffee consumption with plasma lipoproteins, fibrinogen, and platelet aggregability in middle aged men. Proceedings of the International Epidemiological Association; 1987, Finland

  97. Bak AA, van Vliet HH, Grobbee DE. Coffee, caffeine and hemostasis: results from two randomized studies. Atherosclerosis 1990; 83(2-3): 249–55

    PubMed  CAS  Google Scholar 

  98. Naismith DJ, Akinyanju PA, Szanto S, et al. The effect, in volunteers, of coffee and decaffeinated coffee on blood glucose, insulin, plasma lipids and some factors involved in blood clotting. Nutr Metab 1970; 12(3): 144–51

    PubMed  CAS  Google Scholar 

  99. Bak AA, Grobbee DE. Coffee, caffeine and hemostasis: a review. Neth J Med 1990; 37(5-6): 242–6

    PubMed  CAS  Google Scholar 

  100. Ganapathi MK, Mackiewicz A, Samols D, et al. Induction of C-reactive protein by cytokines in human hepatoma cell lines is potentiated by caffeine. Biochem J 1990; 269(1): 41–6

    PubMed  CAS  Google Scholar 

  101. Kushner I, Mackiewicz A. Acute phase proteins as disease markers. Dis Markers 1987; 5(1): 1–11

    PubMed  CAS  Google Scholar 

  102. Ammaturo V, Perricone C, Canazio A, et al. Caffeine stimulates in vivo platelet reactivity. Acta Med Scand 1988; 224(3): 245–7

    PubMed  CAS  Google Scholar 

  103. Weksler BB. Antiplatelet agents in stroke prevention: combination therapy: present and future. Cerebrovasc Dis 2000; 10(5 Suppl.): 41–8

    PubMed  CAS  Google Scholar 

  104. Forde OH, Knutsen SF, Arnesen E, et al. The Tromso Heart Study: coffee consumption and serum lipid concentrations in men with hypercholesterolaemia: an randomised intervention study. BMJ (Clin Res Ed) 1985; 290(6472): 893–5

    CAS  Google Scholar 

  105. Berndt B, Mensink GB, Kohlmeier M, et al. Lipoprotein metabolism and coffee intake: who is at risk? Z Ernahrungswiss 1993; 32(3): 163–75

    PubMed  CAS  Google Scholar 

  106. Urgert R, Schulz AG, Katan MB. Effects of cafestol and kahweol from coffee grounds on serum lipids and serum liver enzymes in humans. Am J Clin Nutr 1995; 61(1): 149–54

    PubMed  CAS  Google Scholar 

  107. Blanchard J, Sawers SJ. Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm 1983; 11(2): 109–26

    PubMed  CAS  Google Scholar 

  108. American Heart Association. Heart disease and stroke statistics: 2003 update. Dallas (TX): American Heart Association, 2003

    Google Scholar 

Download references

Acknowledgements

The Office of Naval Research supported the preparation of this manuscript by Laura Cousino Klein (grants N00014-01-1-0547 and N00014-03-1-0248) and Isabella M. Rodrigues (grant N00014-01-1-0547). The authors thank Drs Frank E. Ritter for his invaluable input on this article, M. Shiels and E. Donaldson for their dedicated assistance with gathering references, and F. Ahern, R. Ceballos, L. Kozlowski, R. Stern, C. Whetzel and an anonymous reviewer for their valuable comments on earlier versions of this article. The authors have no potential conflicts of interest that are directly relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura C. Klein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, I.M., Klein, L.C. Boiled or Filtered Coffee?. Toxicol Rev 25, 55–69 (2006). https://doi.org/10.2165/00139709-200625010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200625010-00004

Keywords

Navigation