Skip to main content
Log in

Genetic Testing in Crohn Disease

Utility in Individualizing Patient Management

  • Practical Pharmacogenomics
  • Published:
American Journal of Pharmacogenomics

Abstract

Inflammatory bowel disease (IBD), with its two subforms of Crohn disease and ulcerative colitis, is a polygenic disease that manifests due to environmental trigger factors on the background of a complex genetic predisposition. The first risk gene underlying susceptibility to Crohn disease has been identified as CARD15 (located on chromosome 16q12, encoding NOD2). Three single nucleotide polymorphisms in the leucine rich region (LRR) of this gene are strongly and independently associated with Crohn disease susceptibility and explain up to 20% of the total genetic predisposition for Crohn disease. These variants have been consistently replicated as associated with a particular sub-phenotype characterized by small bowel (ileum) involvement and early age at onset. Presently, genetic testing for the CARD15 variants has only a modest relevance in clinical practice.

The most attractive use of genetic testing is for the prediction of response to therapy. Most therapies only show efficacy in subgroups of patients and no clinical parameters are available to distinguish, prior to therapy, whether the patients will be responders or non-responders, or if the patients will experience adverse effects. The pharmacogenetic basis of toxicity is well known for azathioprine: several thiopurine methyltransferase (TPMT) polymorphisms that are associated with reduced activity of this thiopurine drug metabolizing enzyme result in cytotoxic and immunosuppressive adverse effects of azathioprine. Genetic screening, which has found its way into routine clinical diagnostics, allows the identification of the patients who will not tolerate a standard dose of the drug. The extensive search for genetic predictors of response to the anti-tumor necrosis factor treatment with infliximab, which results in a remission rate of 30–40%, has, however, failed to indentify a variation associated with a differential response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Steinhardt HJ, Loeschke K, Kasper H, et al. European Cooperative Crohn’s Disease Study (ECCDS): clinical features and natural history. Digestion 1985; 31: 97–108

    Article  PubMed  CAS  Google Scholar 

  2. Munkholm P, Langholz E, Davidsen M, et al. Disease activity courses in a regional cohort of Crohn’s disease patients. Scand J Gastroenterol 1995; 30: 699–706

    Article  PubMed  CAS  Google Scholar 

  3. Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411: 599–603

    Article  PubMed  CAS  Google Scholar 

  4. Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411: 603–6

    Article  PubMed  CAS  Google Scholar 

  5. Hampe J, Cuthbert A, Croucher PJ, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet 2001; 357: 1925–8

    Article  PubMed  CAS  Google Scholar 

  6. Inohara N, Nunez G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 2001; 20: 6473–81

    Article  PubMed  CAS  Google Scholar 

  7. Ogura Y, Inohara N, Benito A, et al. Nod2, a Nodl/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 2001; 276: 4812–8

    Article  PubMed  CAS  Google Scholar 

  8. Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278: 8869–72

    Article  PubMed  CAS  Google Scholar 

  9. Inohara N, Ogura Y, Fontalba A, et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn’s disease. J Biol Chem 2003; 278: 5509–12

    Article  PubMed  CAS  Google Scholar 

  10. Watanabe T, Kitani A, Murray PJ, et al. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 2004; 5: 800–8

    Article  PubMed  CAS  Google Scholar 

  11. Croucher PJ, Mascheretti S, Hampe J, et al. Haplotype structure and association to Crohn’s disease of CARD15 mutations in two ethnically divergent populations. Eur J Hum Genet 2003; 11: 6–16

    Article  PubMed  CAS  Google Scholar 

  12. Cuthbert AP, Fisher SA, Mirza MM, et al. The contribution of NOD2 gene mutations to the risk and site of disease in inflammatory bowel disease. Gastroenterology 2002; 122: 867–74

    Article  PubMed  CAS  Google Scholar 

  13. Lesage S, Zouali H, Cezard JP, et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am J Hum Genet 2002; 70: 845–57

    Article  PubMed  CAS  Google Scholar 

  14. Gutierrez O, Pipaon C, Inohara N, et al. Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem 2002; 277: 41701–5

    Article  PubMed  CAS  Google Scholar 

  15. Rosenstiel P, Fantini M, Brautigam K, et al. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 2003; 124: 1001–9

    Article  PubMed  CAS  Google Scholar 

  16. Mascheretti S, Hampe J, Croucher PJ, et al. Response to infliximab treatment in Crohn’s disease is not associated with mutations in the CARD15 (NOD2) gene: an analysis in 534 patients from two multicenter, prospective GCP-level trials. Pharmacogenetics 2002; 12: 509–15

    Article  PubMed  CAS  Google Scholar 

  17. Vermeire S, Wild G, Kocher K, et al. CARD15 genetic variation in a Quebec population: prevalence, genotype-phenotype relationship, and haplotype structure. Am J Hum Genet 2002; 71: 74–83

    Article  PubMed  CAS  Google Scholar 

  18. Vermeire S, Louis E, Rutgeerts P, et al. NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology 2002; 123: 106–11

    Article  PubMed  CAS  Google Scholar 

  19. Abreu MT, Taylor KD, Lin YC, et al. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology 2002; 123: 679–88

    Article  PubMed  CAS  Google Scholar 

  20. Ahmad T, Armuzzi A, Bunce M, et al. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology 2002; 122: 854–66

    Article  PubMed  CAS  Google Scholar 

  21. Vermeire S, Rutgeerts P, Van Steen K, et al. Genome wide scan in a Flemish inflammatory bowel disease population: support for the IBD4 locus, population heterogeneity, and epistasis. Gut 2004; 53: 980–6

    Article  PubMed  CAS  Google Scholar 

  22. Peeters H, Vander Cruyssen B, Laukens D, et al. Radiological sacroiliitis, a hallmark of spondylitis, is linked with CARD15 gene polymorphisms in patients with Crohn’s disease. Ann Rheum Dis 2004; 63: 1131–4

    Article  PubMed  CAS  Google Scholar 

  23. Helio T, Halme L, Lappalainen M, et al. CARD15/NOD2 gene variants are associated with familially occurring and complicated forms of Crohn’s disease. Gut 2003; 52: 558–62

    Article  PubMed  CAS  Google Scholar 

  24. Bairead E, Harmon DL, Curtis AM, et al. Association of NOD2 with Crohn’s disease in a homogenous Irish population. Eur J Hum Genet 2003; 11: 237–44

    Article  PubMed  CAS  Google Scholar 

  25. Arnott ID, Nimmo ER, Drummond HE, et al. NOD2/CARD15, TLR4 and CD14 mutations in Scottish and Irish Crohn’s disease patients: evidence for genetic heterogeneity within Europe? Genes Immun 2004; 5: 417–25

    Article  PubMed  CAS  Google Scholar 

  26. Hampe J, Grebe J, Nikolaus S, et al. Association of NOD2 (CARD 15) genotype with clinical course of Crohn’s disease: a cohort study. Lancet 2002; 359: 1661–5

    Article  PubMed  CAS  Google Scholar 

  27. Thjodleifsson B, Sigthorsson G, Cariglia N, et al. Subclinical intestinal inflammation: an inherited abnormality in Crohn’s disease relatives? Gastroenterology 2003; 124: 1728–37

    Article  PubMed  Google Scholar 

  28. Yamazaki K, Takazoe M, Tanaka T, et al. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn’s disease. J Hum Genet 2002; 47: 469–72

    Article  PubMed  CAS  Google Scholar 

  29. Leong RW, Armuzzi A, Ahmad T, et al. NOD2/CARD15 gene polymorphisms and Crohn’s disease in the Chinese population. Aliment Pharmacol Ther 2003; 17: 1465–70

    Article  PubMed  CAS  Google Scholar 

  30. Chamaillard M, Philpott D, Girardin SE, et al. Gene-environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc Natl Acad Sci U S A 2003; 100: 3455–60

    Article  PubMed  CAS  Google Scholar 

  31. Stoll M, Corneliussen B, Costello CM, et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nat Genet 2004; 36: 476–80

    Article  PubMed  CAS  Google Scholar 

  32. Daly MJ, Pearce AV, Farwell L, et al. Association of DLG5 R30Q variant with inflammatory bowel disease. Eur J Hum Genet 2005 Apr 20; Epub ahead of print

    Google Scholar 

  33. Yamazaki K, Takazoe M, Tanaka T, et al. Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease. J Hum Genet 2004; 49(12): 664–8

    Article  PubMed  CAS  Google Scholar 

  34. Noble CL, Nimmo ER, Drammond H, et al. DLG5 variants do not influence susceptibility to inflammatory bowel disease in the Scottish population. Gut 2005 Apr 20; Epub ahead of print

    Google Scholar 

  35. Russell RK, Drammond HE, Nimmo ER, et al. The DLG 5-113A mutation is associated with susceptibility to early onset inflammatory bowel disease and demonstrates a complex genotype phenotype relationship: PG2-05. J Pediatr Gastroenterol Nutr 2005 May; 40(5): 641–2

    Google Scholar 

  36. Peltekova VD, Wintle RF, Rubin LA, et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 2004; 36: 471–5

    Article  PubMed  CAS  Google Scholar 

  37. Brant SR, Panhuysen CI, Nicolae D, et al. MDR1 Ala893 polymorphism is associated with inflammatory bowel disease. Am J Hum Genet 2003; 73: 1282–92

    Article  PubMed  CAS  Google Scholar 

  38. Potocnik U, Ferkolj I, Glavac D, et al. Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis. Genes Immun 2004; 5: 530–9

    Article  PubMed  CAS  Google Scholar 

  39. Schwab M, Schaeffeler E, Marx C, et al. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 2003; 124: 26–33

    Article  PubMed  CAS  Google Scholar 

  40. Ho G, Nimmo E, Tenesa A, et al. Allelic variations of the multidrug resistance gene determine susceptibility and disaese behavior in ulcerative colitis. Gastroenterology 2005; 128: 288–96

    Article  PubMed  CAS  Google Scholar 

  41. Franchimont D, Vermeire S, El Housni H, et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 2004; 53: 987–92

    Article  PubMed  CAS  Google Scholar 

  42. Torok HP, Glas J, Tonenchi L, et al. Polymorphisms of the lipopolysaccharidesignaling complex in inflammatory bowel disease: association of a mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin Immunol 2004; 112: 85–91

    Article  PubMed  CAS  Google Scholar 

  43. Joossens S, Reinisch W, Vermeire S, et al. The value of serologic markers in indeterminate colitis: a prospective follow-up study. Gastroenterology 2002; 122: 1242–7

    Article  PubMed  Google Scholar 

  44. Walker LJ, Aldhous MC, Drummond HE, et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn’s disease are associated with disease severity but not NOD2/CARD15 mutations. Clin Exp Immunol 2004; 135: 490–6

    Article  PubMed  CAS  Google Scholar 

  45. Gasche C, Scholmerich J, Brynskov J, et al. A simple classification of Crohn’s disease: report of the Working Party for the World Congresses of Gastroenterology, Vienna 1998. Inflamm Bowel Dis 2000; 6: 8–15

    Article  PubMed  CAS  Google Scholar 

  46. Louis E, Collard A, Oger AF, et al. Behaviour of Crohn’s disease according to the Vienna classification: changing pattern over the course of the disease. Gut 2001; 49: 777–82

    Article  PubMed  CAS  Google Scholar 

  47. Vermeire S. NOD2/CARD15: relevance in clinical practice. Best Pract Res Clin Gastroenterol 2004; 18: 569–75

    Article  PubMed  CAS  Google Scholar 

  48. Radlmayr M, Torok HP, Martin K, et al. The c-insertion mutation of the NOD2 gene is associated with fistulizing and fibrostenotic phenotypes in Crohn’s disease. Gastroenterology 2002; 122: 2091–2

    Article  PubMed  CAS  Google Scholar 

  49. Louis E, Michel V, Hugot JP, et al. Early development of stricturing or penetrating pattern in Crohn’s disease is influenced by disease location, number of flares, and smoking but not by NOD2/CARD15 genotype. Gut 2003; 52: 552–7

    Article  PubMed  CAS  Google Scholar 

  50. Brant SR, Picco MF, Achkar JP, et al. Defining complex contributions of NOD2/CARD15 gene mutations, age at onset, and tobacco use on Crohn’s disease phenotypes. Inflamm Bowel Dis 2003; 9: 281–9

    Article  PubMed  Google Scholar 

  51. Fidder HH, Olschwang S, Avidan B, et al. Association between mutations in the CARD15 (NOD2) gene and Crohn’s disease in Israeli Jewish patients. Am J Med Genet A 2003; 121: 240–4

    Article  Google Scholar 

  52. Hanauer SB, Present DH. The state of the art in the management of inflammatory bowel disease. Rev Gastroenterol Disord 2003; 3: 81–92

    PubMed  Google Scholar 

  53. Targan SR, Hanauer SB, van Deventer SJ, et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med 1997; 337: 1029–35

    Article  PubMed  CAS  Google Scholar 

  54. Present DH, Rutgeerts P, Targan S, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 1999; 340: 1398–405

    Article  PubMed  CAS  Google Scholar 

  55. Sandbom WJ. Strategies for targeting tumour necrosis factor in IBD. Best Pract Res Clin Gastroenterol 2003; 17: 105–17

    Article  CAS  Google Scholar 

  56. Scallon BJ, Moore MA, Trinh H, et al. Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions. Cytokine 1995; 7: 251–9

    Article  PubMed  CAS  Google Scholar 

  57. van Deventer SJ. Transmembrane TNF-alpha, induction of apoptosis, and the efficacy of TNF-targeting therapies in Crohn’s disease. Gastroenterology 2001; 121: 1242–6

    Article  PubMed  Google Scholar 

  58. Lugering A, Schmidt M, Lugering N, et al. Infliximab induces apoptosis in monocytes from patients with chronic active crohn’s disease by using a cas-pase-dependent pathway. Gastroenterology 2001; 121: 1145–57

    Article  PubMed  CAS  Google Scholar 

  59. Van den Brande JM, Braat H, van den Brink GR, et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology 2003; 124: 1774–85

    Article  PubMed  CAS  Google Scholar 

  60. Waetzig GH, Seegert D, Rosenstiel P, et al. p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J Immunol 2002; 168: 5342–51

    PubMed  CAS  Google Scholar 

  61. Willoughby JM, Beckett J, Kumar PJ, et al. Controlled trial of azathioprine in Crohn’s disease. Lancet 1971; II: 944–7

    Article  Google Scholar 

  62. Rosenberg JL, Wall AJ, Levin B, et al. A controlled trial of azathioprine in the management of chronic ulcerative colitis. Gastroenterology 1975; 69: 96–9

    PubMed  CAS  Google Scholar 

  63. Present DH, Korelitz BI, Wisch N, et al. Treatment of Crohn’s disease with 6-mercaptopurine: a long-term, randomized, double-blind study. N Engl J Med 1980; 302: 981–7

    Article  PubMed  CAS  Google Scholar 

  64. Korelitz BI, Adler DJ, Mendelsohn RA, et al. Long-term experience with 6-mercaptopurine in the treatment of Crohn’s disease. Am J Gastroenterol 1993; 88: 1198–205

    PubMed  CAS  Google Scholar 

  65. George J, Present DH, Pou R, et al. The long-term outcome of ulcerative colitis treated with 6-mercaptopurine. Am J Gastroenterol 1996; 91: 1711–4

    PubMed  CAS  Google Scholar 

  66. Present DH, Meltzer SJ, Kramholz MP, et al. 6-Mercaptopurine in the management of inflammatory bowel disease: short- and long-term toxicity. Ann Intern Med 1989; 111: 641–9

    PubMed  CAS  Google Scholar 

  67. Connell WR, Kamm MA, Ritchie JK, et al. Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut 1993; 34: 1081–5

    Article  PubMed  CAS  Google Scholar 

  68. Krynetski EY, Krynetskaia NF, Yanishevski Y, et al. Methylation of mercaptopurine, thioguanine, and their nucleotide metabolites by heterologously expressed human thiopurine S-methyltransferase. Mol Pharmacol 1995; 47: 1141–7

    PubMed  CAS  Google Scholar 

  69. Krynetski EY, Schuetz JD, Galpin AJ, et al. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci U S A 1995; 92: 949–53

    Article  PubMed  CAS  Google Scholar 

  70. Tai HL, Krynetski EY, Yates CR, et al. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 1996; 58: 694–702

    PubMed  CAS  Google Scholar 

  71. Tai HL, Krynetski EY, Schuetz EG, et al. Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): mechanisms for the genetic polymorphism of TPMT activity. Proc Natl Acad Sci U S A 1997; 94: 6444–9

    Article  PubMed  CAS  Google Scholar 

  72. Krynetski EY, Evans WE. Pharmacogenetics as a molecular basis for individualized drag therapy: the thiopurine S-methyltransferase paradigm. Pharm Res 1999; 16: 342–9

    Article  PubMed  CAS  Google Scholar 

  73. Hamdan-Khalil R, Allorge D, Lo-Guidice JM, et al. In vitro characterization of four novel non-functional variants of the thiopurine S-methyltransferase. Biochem Biophys Res Commun 2003; 309: 1005–10

    Article  PubMed  CAS  Google Scholar 

  74. Schaeffeler E, Fischer C, Brockmeier D, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 2004; 14: 407–17

    Article  PubMed  CAS  Google Scholar 

  75. Hamdan-Khalil R, Gala JL, Allorge D, et al. Identification and functional analysis of two rare allelic variants of the thiopurine S-methyltransferase gene, TPMT*16 and TPMT*19. Biochem Pharmacol 2005; 69: 525–9

    Article  PubMed  CAS  Google Scholar 

  76. Schwab M, Schaffeler E, Marx C, et al. Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics 2002; 12: 429–36

    Article  PubMed  CAS  Google Scholar 

  77. Kaskas BA, Louis E, Hindorf U, et al. Safe treatment of thiopurine S-methyltransferase deficient Crohn’s disease patients with azathioprine. Gut 2003; 52: 140–2

    Article  PubMed  CAS  Google Scholar 

  78. Lichtenstein GR. Use of laboratory testing to guide 6-mercaptopurine/azathioprine therapy. Gastroenterology 2004; 127: 1558–64

    Article  PubMed  Google Scholar 

  79. Colombel JF, Ferrari N, Debuysere H, et al. Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn’s disease and severe myelosuppression during azathioprine therapy. Gastroenterology 2000; 118: 1025–30

    Article  PubMed  CAS  Google Scholar 

  80. Szumlanski CL, Weinshilboum RM. Sulphasalazine inhibition of thiopurine methyltransferase: possible mechanism for interaction with 6-mercaptopurine and azathioprine. Br J Clin Pharmacol 1995; 39: 456–9

    Article  PubMed  CAS  Google Scholar 

  81. Summers RW, Switz DM, Sessions JT, et al. National Cooperative Crohn’s Disease Study: results of drug treatment. Gastroenterology 1979; 77: 847–69

    PubMed  CAS  Google Scholar 

  82. Malchow H, Ewe K, Brandes JW, et al. European Cooperative Crohn’s Disease Study (ECCDS): results of drug treatment. Gastroenterology 1984; 86: 249–66

    PubMed  CAS  Google Scholar 

  83. Lichtenstein GR. Approach to corticosteroid-dependent and corticosteroid-refractory Crohn’s disease. Inflamm Bowel Dis 2001; 7: S23–9

    Article  PubMed  Google Scholar 

  84. Honda M, Orii F, Ayabe T, et al. Expression of glucocorticoid receptor beta in lymphocytes of patients with glucocorticoid-resistant ulcerative colitis. Gastroenterology 2000; 118: 859–66

    Article  PubMed  CAS  Google Scholar 

  85. Farrell RJ, Murphy A, Long A, et al. High multidrug resistance (P-glycoprotein 170) expression in inflammatory bowel disease patients who fail medical therapy. Gastroenterology 2000; 118: 279–88

    Article  PubMed  CAS  Google Scholar 

  86. Heresbach D, Alizadeh M, Bretagne JF, et al. TAP gene transporter polymorphism in inflammatory bowel diseases. Scand J Gastroenterol 1997; 32: 1022–7

    Article  PubMed  CAS  Google Scholar 

  87. Gelbmann CM, Rogler G, Gierend M, et al. Association of HLA-DR genotypes and IL-1ra gene polymorphism with treatment failure of budesonide and disease patterns in Crohn’s disease. Eur J Gastroenterol Hepatol 2001; 13: 1431–7

    Article  PubMed  CAS  Google Scholar 

  88. Gelbmann CM, Rogler G, Gross V, et al. Prior bowel resections, perianal disease, and a high initial Crohn’s disease activity index are associated with corticosteroid resistance in active Crohn’s disease. Am J Gastroenterol 2002; 97: 1438–45

    Article  PubMed  Google Scholar 

  89. Schaible TF. Long term safety of infliximab. Can J Gastroenterol 2000; 14: 29C–32C

    PubMed  Google Scholar 

  90. Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 2001; 345: 1098–104

    Article  PubMed  CAS  Google Scholar 

  91. Lim WS, Powell RJ, Johnston ID. Tuberculosis and treatment with infliximab. N Engl J Med 2002; 346: 623–6

    Article  PubMed  Google Scholar 

  92. Colombel JF, Loftus EV, Tremaine WJ, et al. The safety profile of infliximab in patients with Crohn’s disease: the Mayo clinic experience in 500 patients. Gastroenterology 2004; 126: 19–31

    Article  PubMed  CAS  Google Scholar 

  93. Hanauer SB, Feagan BG, Lichtenstein GR, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 2002; 359: 1541–9

    Article  PubMed  CAS  Google Scholar 

  94. D’Haens G, Van Deventer S, Van Hogezand R, et al. Endoscopic and histological healing with infliximab anti-tumor necrosis factor antibodies in Crohn’s disease: a European multicenter trial. Gastroenterology 1999; 116: 1029–34

    Article  PubMed  Google Scholar 

  95. Rutgeerts P, D’Haens G, Targan S, et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology 1999; 117: 761–9

    Article  PubMed  CAS  Google Scholar 

  96. Taylor KD, Plevy SE, Yang H, et al. ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn’s disease. Gastroenterology 2001; 120: 1347–55

    Article  PubMed  CAS  Google Scholar 

  97. Louis E, Vermeire S, Rutgeerts P, et al. A positive response to infliximab in Crohn disease: association with a higher systemic inflammation before treatment but not with −308 TNF gene polymorphism. Scand J Gastroenterol 2002; 37: 818–24

    PubMed  CAS  Google Scholar 

  98. Mascheretti S, Hampe J, Kuhbacher T, et al. Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn’s disease treated with infliximab. Pharmacogenomics J 2002; 2: 127–36

    Article  PubMed  CAS  Google Scholar 

  99. Pierik M, Vermeire S, Steen KV, et al. Tumour necrosis factor-alpha receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab. Aliment Pharmacol Ther 2004; 20: 303–10

    Article  PubMed  CAS  Google Scholar 

  100. Till A, Rosenstiel P, Krippner-Heidenreich A, et al. The Met-196 → Arg variation of human tumor necrosis factor receptor 2 (TNFR2) affects TNFα-induced apoptosis by impaired NF-κB signaling and target gene expression. J Biol Chem 2005; 280: 5994–6004

    Article  PubMed  CAS  Google Scholar 

  101. Louis E, El Ghoul Z, Vermeire S, et al. Association between polymorphism in IgG Fc receptor IIIa coding gene and biological response to infliximab in Crohn’s disease. Aliment Pharmacol Ther 2004; 19: 511–9

    Article  PubMed  CAS  Google Scholar 

  102. Vermeire S, Louis E, Carbonez A, et al. Demographic and clinical parameters influencing the short-term outcome of anti-tumor necrosis factor (infliximab) treatment in Crohn’s disease. Am J Gastroenterol 2002; 97: 2357–63

    Article  PubMed  CAS  Google Scholar 

  103. Baert F, Noman M, Vermeire S, et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N Engl J Med 2003; 348: 601–8

    Article  PubMed  CAS  Google Scholar 

  104. Roblin X, Serre-Debeauvais F, Phelip JM, et al. Drug interaction between infliximab and azathioprine in patients with Crohn’s disease. Aliment Pharmacol Ther 2003; 18: 917–25

    Article  PubMed  CAS  Google Scholar 

  105. Parsi MA, Achkar JP, Richardson S, et al. Predictors of response to infliximab in patients with Crohn’s disease. Gastroenterology 2002; 123: 707–13

    Article  PubMed  CAS  Google Scholar 

  106. Arnott ID, McNeill G, Satsangi J. An analysis of factors influencing short-term and sustained response to infliximab treatment for Crohn’s disease. Aliment Pharmacol Ther 2003; 17: 1451–7

    Article  PubMed  CAS  Google Scholar 

  107. Fefferman DS, Lodhavia PJ, Alsahli M, et al. Smoking and immunomodulators do not influence the response or duration of response to infliximab in Crohn’s disease. Inflamm Bowel Dis 2004; 10: 346–51

    Article  PubMed  Google Scholar 

  108. Danese S, Sans M, Fiocchi C. Inflammatory bowel disease: the role of environmental factors. Autoimmun Rev 2004; 3: 394–400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the European Commission (Genomics of IBD), the Competence Network Inflammatory Bowel Disease (www.kompetenznetz-ced.de), and the German National Genome Research Network (www.ngfn.de). ## Some of the own pharmacogenetic studies of the therapy with infliximab in Crohn disease that are referenced were funded in part by a grant from Centocor. ## Stefan Schreiber served as a consultant for Centocor/Schering Plough and, as an invited speaker, received honoraria from various companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Schreiber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascheretti, S., Schreiber, S. Genetic Testing in Crohn Disease. Am J Pharmacogenomics 5, 213–222 (2005). https://doi.org/10.2165/00129785-200505040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200505040-00002

Keywords

Navigation