Skip to main content
Log in

Management of Metastatic Bone Disease and Hypercalcemia of Malignancy

  • Review Article
  • Published:
American Journal of Cancer

Abstract

Thirty years of research have established bisphosphonates as the most effective agents for the inhibition of osteoclast-mediated bone resorption, and they play an important role in the management of malignant bone disease. Bisphosphonates have been systematically improved through chemical engineering, and the newest nitrogen-containing compounds, including zoledronic acid and ibandronate, are 1000-fold more potent than first-generation compounds. Consequently, they can be administered at low molar doses via short intravenous infusions without compromising renal safety. Bisphosphonates have a variety of metabolic effects on osteoclasts. Nitrogen-containing bisphosphonates inhibit protein prenylation via the mevalonate pathway, thereby inhibiting osteoclast activation and inducing apoptosis. Preclinical studies suggest that bisphosphonates also have direct and indirect antitumor activity. In animal models, bisphosphonates reduced skeletal tumor burden and bone metastases. Currently, intravenous bisphosphonates are the standard therapy for hypercalcemia of malignancy, and they have become an integral part of the treatment of bone metastases in conjunction with standard antineoplastic agents. Intravenous bisphosphonates quickly normalize serum calcium, reduce skeletal complications, and palliate bone pain in patients with bone metastases. Intravenous pamidronate (90mg via 2-hour infusion every 3–4 weeks) has, until recently, been the international standard for the treatment of osteolytic bone lesions from breast cancer or multiple myeloma. However, 4mg zoledronic acid (via 15-minute infusion) is quickly becoming the new standard based on evidence that it is as safe and effective as 90mg pamidronate in patients with breast cancer and multiple myeloma and significantly more effective for hypercalcemia of malignancy. Consequently, the American Society of Clinical Oncology guidelines for breast cancer and multiple myeloma recommend pamidronate or zoledronic acid for patients with radiographic evidence of osteolytic bone destruction. Moreover, 4mg zoledronic acid is the only bisphosphonate that has demonstrated significant clinical benefit in patients with other solid tumors, including lung cancer, and prostate cancer patients with primarily osteoblastic bone metastases. Bisphosphonates also may have activity in the adjuvant setting to prevent or delay the development of bone metastases. Studies with oral clodronate in early breast cancer have provided clinical evidence that bone metastases can be inhibited, and the studies are ongoing with more potent bisphosphonates. Bisphosphonates have also been shown to prevent cancer treatment-induced bone loss. These and other studies continue to redefine the role of bisphosphonates in the treatment of malignant bone disease and the management of bone health in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coleman RE. Skeletal complications of malignancy. Cancer 1997 Oct 15; 80Suppl. 8: 1588–94

    Article  PubMed  CAS  Google Scholar 

  2. Mundy GR. Myeloma bone disease. Eur J Cancer 1998; 34(2): 246–51

    Article  PubMed  CAS  Google Scholar 

  3. Parkin DM, Pisani P, Ferlay J. Global cancer statistics. CA Cancer J Clin 1999 Jan 1999 Feb 28; 49(1): 33–64

    Article  PubMed  CAS  Google Scholar 

  4. Wilson MA, Calhoun FW. The distribution of skeletal metastases in breast and pulmonary cancer: concise communication. J Nucl Med 1981; 22(7): 594–7

    PubMed  CAS  Google Scholar 

  5. Hortobagyi GN. Bone metastases in breast cancer patients. Semin Oncol 1991 Aug; 18Suppl. 5: 11–5

    PubMed  CAS  Google Scholar 

  6. Mundy GR. Metastatic bone disease. In: Mundy GR, editor. Bone remodeling and its disorders. London: Martin Dunitz Ltd, 1999: 123–146

    Google Scholar 

  7. Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev 1989 Aug; 8(2): 98–101

    PubMed  CAS  Google Scholar 

  8. Roodman GD. Biology of osteoclast activation in cancer. J Clin Oncol 2001 Aug 1; 19(15): 3562–71

    PubMed  CAS  Google Scholar 

  9. Kong YY, Boyle WJ, Penninger JM. Osteoprotegerin ligand: a regulatory of immune responses and bone physiology. Immunol Today 2000 Oct; 21(10): 495–502

    Article  PubMed  CAS  Google Scholar 

  10. Kong YY, Penninger JM. Molecular control of bone remodeling and osteoporosis. Exp Gerontol 2000 Oct; 35(8): 947–56

    Article  PubMed  CAS  Google Scholar 

  11. Body JJ. Bisphosphonates. Eur J Cancer 1998 Feb; 34(2): 263–9

    Article  PubMed  CAS  Google Scholar 

  12. Mundy GR. Mechanisms of bone metastasis. Cancer 1997 Oct 15; 80Suppl. 8: 1546–56

    Article  PubMed  CAS  Google Scholar 

  13. Clarke NW, McClure J, George NJ. Morphometric evidence for bone resorption and replacement in prostate cancer. Br J Urol 1991 Jul; 68(1): 74–80

    Article  PubMed  CAS  Google Scholar 

  14. Garnero P, Buchs N, Zekri J, et al. Markers of bone turnover for the management of patients with bone metastases from prostate cancer. Br J Cancer 2000 Feb; 82(4): 858–64

    Article  PubMed  CAS  Google Scholar 

  15. Percival RC, Urwin GH, Harris S, et al. Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur J Surg Oncol 1987 Feb; 13(1): 41–9

    PubMed  CAS  Google Scholar 

  16. Berruti A, Dogliotti L, Bitossi R, et al. Incidence of skeletal complications in patients with bone metastatic prostate cancer and hormone refractory disease: predictive role of bone resorption and formation markers evaluated at baseline. J Urol 2000 Oct; 164(4): 1248–53

    Article  PubMed  CAS  Google Scholar 

  17. Clarke NW, Holbrook IB, McClure J, et al. Osteoclast inhibition by pamidronate in metastatic prostate cancer: a preliminary study. Br J Cancer 1991 Mar; 63(3): 420–3

    Article  PubMed  CAS  Google Scholar 

  18. Clarke NW, McClure J, George NJ. Disodium pamidronate identifies differential osteoclastic bone resorption in metastatic prostate cancer. Br J Urol 1992 Jan; 69(1): 64–70

    Article  PubMed  CAS  Google Scholar 

  19. Taube T, Kylmala T, Lamberg-Allardt C, et al. The effect of clodronate on bone in metastatic prostate cancer: histomorphometric report of a double-blind randomised placebo-controlled study. Eur J Cancer 1994; 30A(6): 751–8

    Article  PubMed  CAS  Google Scholar 

  20. Marquardt H, Lioubin MN, Ikeda T. Complete amino acid sequence of human transforming growth factor type beta 2. J Biol Chem 1987 Sep 5; 262(25): 12127–31

    PubMed  CAS  Google Scholar 

  21. Mayahara H, Ito T, Nagai H, et al. In vivo stimulation of endosteal bone formation by basic fibroblast growth factor in rats. Growth Factors 1993; 9(1): 73–80

    Article  PubMed  CAS  Google Scholar 

  22. Dunstan CR, Boyce R, Boyce BF, et al. Systemic administration of acidic fibroblast growth factor (FGF-1) prevents bone loss and increases new bone formation in ovariectomized rats. J Bone Miner Res 1999 Jun; 14(6): 953–9

    Article  PubMed  CAS  Google Scholar 

  23. Izbicka E, Dunstan C, Esparza J, et al. Human amniotic tumor that induces new bone formation in vivo produces growth-regulatory activity in vitro for osteoblasts identified as an extended form of basic fibroblast growth factor. Cancer Res 1996 Feb 1; 56(3): 633–6

    PubMed  CAS  Google Scholar 

  24. Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999 Dec 3; 286(5446): 1946–9

    Article  PubMed  CAS  Google Scholar 

  25. Cramer SD, Chen Z, Peehl DM. Prostate specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: inactivation of PTHrP-stimulated cAMP accumulation in mouse osteoblasts. J Urol 1996 Aug; 156 (2 Pt 1): 526–31

    Article  PubMed  CAS  Google Scholar 

  26. Nelson JB, Hedican SP, George DJ, et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1995 Sep; 1(9): 944–9

    Article  PubMed  CAS  Google Scholar 

  27. Major PP, Lipton A, Berenson J, et al. Oral bisphosphonates: a review of clinical use in patients with bone metastases. Cancer 2000 Jan 1; 88(1): 6–14

    Article  PubMed  CAS  Google Scholar 

  28. Benford HL, Frith JC, Auriola S, et al. Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs. Mol Pharmacol 1999 Jul; 56(1): 131–40

    PubMed  CAS  Google Scholar 

  29. Russell RG, Rogers MJ. Bisphosphonates: from the laboratory to the clinic and back again. Bone 1999; 25(1): 97–106

    Article  PubMed  CAS  Google Scholar 

  30. Luckman SP, Hughes DE, Coxon FP, et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 1998 Apr; 13(4): 581–9

    Article  PubMed  CAS  Google Scholar 

  31. Green JR, Müller K, Jaeggi KA. Preclinical pharmacology of CGP 42′446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res 1994 May; 9(5): 745–51

    Article  PubMed  CAS  Google Scholar 

  32. Rogers MJ, Frith JC, Luckman SP, et al. Molecular mechanisms of action of bisphosphonates. Bone 1999 May; 24(5 Suppl.): 73S–9S

    Article  PubMed  CAS  Google Scholar 

  33. Russell RG, Rogers MJ, Frith JC, et al. The pharmacology of bisphosphonates and new insights into their mechanisms of action. J Bone Miner Res 1999 Oct; 14Suppl. 2: 53–65

    Article  PubMed  CAS  Google Scholar 

  34. Luckman SP, Coxon FP, Ebetino FH, et al. Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Miner Res 1998 Nov; 13(11): 1668–78

    Article  PubMed  CAS  Google Scholar 

  35. Oliff A. Farnesyltransferase inhibitors: targeting the molecular basis of cancer. Biochim Biophys Acta 1999 May 31; 1423(3): C19–30

    PubMed  CAS  Google Scholar 

  36. Zhang FL, Casey PJ. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 1996; 65: 241–69

    Article  PubMed  CAS  Google Scholar 

  37. Benford HL, Helfrich MH, Sebti S, et al. Inhibition of protein geranylgeranylation by bisphosphonates and GGTI298 causes activation of caspase 3-like proteases in osteoclasts [abstract]. Calcif Tissue Int 1999 Jan; 64Suppl. 1: S45

    Google Scholar 

  38. Senaratne SG, Pirianov G, Mansi JL, et al. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 2000 Apr; 82(8): 1459–68

    Article  PubMed  CAS  Google Scholar 

  39. Aparicio A, Gardner A, Tu Y, et al. In vitro cytoreductive effects on multiple myeloma cells induced by bisphosphonates. Leukemia 1998 Feb; 12(2): 220–9

    Article  PubMed  CAS  Google Scholar 

  40. Derenne S, Amiot M, Barillé S, et al. Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoral environment. J Bone Miner Res 1999 Dec; 14(12): 2048–56

    Article  PubMed  CAS  Google Scholar 

  41. Fromigué O, Lagneaux L, Body JJ. Bisphosphonates induce breast cancer cell death in vitro. J Bone Miner Res 2000 Nov; 15(11): 2211–21

    Article  PubMed  Google Scholar 

  42. Tassone P, Tagliaferri P, Galea E, et al. Growth inhibition and apoptosis are induced by zoledronic acid on human pancreatic cancer cell lines [abstract 4736]. Proc Am Assoc Cancer Res 2002; 43: 956–7

    Google Scholar 

  43. MacDonald CD, Jayasundara SG, Mansi JL, et al. Inhibitory effects of bisphosphonates on growth of breast and lung carcinoma cells [abstract P55]. Br J Cancer 2001; 85Suppl. 1: 47

    Google Scholar 

  44. Boissier S, Ferreras M, Peyruchaud O, et al. Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Cancer Res 2000 Jun 1; 60(7): 2949–54

    PubMed  CAS  Google Scholar 

  45. Green J, Gschaidmeier H, Yoneda T, et al. Zoledronic acid potently inhibits tumour-induced osteolysis in two models of breast cancer metastasis to bone [abstract 50P]. Ann Oncol 2000; 11Suppl. 4: 14

    Google Scholar 

  46. Yaccoby S, Pearse RN, Johnson CL, et al. Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity. Br J Haematol 2002 Feb; 116(2): 278–90

    Article  PubMed  Google Scholar 

  47. Krempien B. Morphological findings in bone metastasis, tumor osteopathy and antiosteolytic therapy. In: Diel IJ, Kaufmann M, Bastert G, editors. Metastatic bone disease: fundamental and clinical aspects. New York: Springer-Verlag, 1994: 59–85

    Chapter  Google Scholar 

  48. Krempien B. Experimental findings on the osteoprotective potential of bisphosphonates against bone metastases and tumor-induced osteopathy: a pleading for an early and preventive administration. In: Orr FW, Singh G, editors. Bone metastasis-mechanisms and pathophysiology. Georgetown (TX): RG Landes, 1996: 221–44

    Google Scholar 

  49. Krempien D, Diel IJ, Jöckle-Kretz B, et al. The Walker Carcinosarcoma 256 as an experimental model of bone metastasis. Influence of skeletal metabolism on the development of bone metastases. Verh Dtsch Ges Pathol 1984; 68: 211–6

    Google Scholar 

  50. Krempien B, Wingen F, Eichmann T, et al. Protective effects of a prophylactic treatment with the bisphosphonate 3-amino-1-hydroxypropane-1,1-bisphosphonic acid on the development of tumor osteopathies in the rat: experimental studies with the Walker carcinosarcoma 256. Oncology 1988; 45(1): 41–6

    Article  PubMed  CAS  Google Scholar 

  51. Diel IJ, Solomayer EF, Bastert G. Bisphosphonates and the prevention of metastasis: first evidences from preclinical and clinical studies. Cancer 2000 Jun 15; 88(12 Suppl.): 3080–8

    Article  PubMed  CAS  Google Scholar 

  52. Mundy GR, Yoneda T. Bisphosphonates as anticancer drugs. N Engl J Med 1998 Aug 6; 339(6): 398–400

    Article  PubMed  CAS  Google Scholar 

  53. Wood J, Schnell C, Green J. Zoledronic acid (Zometa), a potent inhibitor of bone resorption, inhibits proliferation and induces apoptosis in human endothelial cells in vitro and is anti-angiogenic in a murine growth factor implant model [abstract 2620]. Proc Am Soc Clin Oncol 2000; 19: 664a

    Google Scholar 

  54. Croucher P, De Raeve H, Perry M, et al. Zoledronic acid prevents the development of osteolytic bone disease and increases survival in a murine model of multiple myeloma [abstract]. Bone 2002; 30 Suppl.: 39S

    Google Scholar 

  55. Dodwell DJ, Howell A. The systemic treatment of bone metastases. In: Rubens RD, Fogelman I, editors. Bone metastases: diagnosis and treatment. London: Springer-Verlag, 1991: 121-47

    Google Scholar 

  56. Cook RJ, Major P. Methodology for treatment evaluation in patients with cancer metastatic to bone. J Natl Cancer Inst 2001 Apr 4; 93(7): 534–8

    Article  PubMed  CAS  Google Scholar 

  57. Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma: Myeloma Aredia Study Group. N Engl J Med 1996 Feb 22; 334(8): 488–93

    Article  PubMed  CAS  Google Scholar 

  58. Berenson JR, Lichtenstein A, Porter L, et al. Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events: Myeloma Aredia Study Group. J Clin Oncol 1998 Feb; 16(2): 593–602

    PubMed  CAS  Google Scholar 

  59. Hortobagyi GN, Theriault RL, Porter L, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med 1996 Dec 12; 335(24): 1785–91

    Article  PubMed  CAS  Google Scholar 

  60. Hortobagyi GN, Theriault RL, Lipton A, et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. Protocol 19 Aredia Breast Cancer Study Group. J Clin Oncol 1998 Jun; 16(6): 2038–44

    PubMed  CAS  Google Scholar 

  61. Theriault RL, Lipton A, Hortobagyi GN, et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 1999 Mar; 17(3): 846–54

    PubMed  CAS  Google Scholar 

  62. Vinholes J, Guo CY, Purohit OP, et al. Metabolic effects of pamidronate in patients with metastatic bone disease. Br J Cancer 1996 May; 73(9): 1089–95

    Article  PubMed  CAS  Google Scholar 

  63. Paterson AH, Powles TJ, Kanis JA, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 1993 Jan; 11(1): 59–65

    PubMed  CAS  Google Scholar 

  64. McCloskey EV, MacLennan IC, Drayson MT, et al. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. MRC Working Party on Leukaemia in Adults. Br J Haematol 1998 Feb; 100(2): 317–25

    Article  PubMed  CAS  Google Scholar 

  65. Lahtinen R, Laakso M, Palva I, et al. Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Finnish Leukaemia Group [published erratum appears in Lancet 1992; 340: 1420]. Lancet 1992; 340: 1049–52

    Article  PubMed  CAS  Google Scholar 

  66. Rosen LS, Gordon D, Kaminski M, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 2001 Sep 2001 Oct 31; 7(5): 377–87

    PubMed  CAS  Google Scholar 

  67. Hillner BE, Ingle JN, Berenson JR, et al. American Society of Clinical Oncology guideline on the role of bisphosphonates in breast cancer. American Society of Clinical Oncology Bisphosphonates Expert Panel. J Clin Oncol 2000 Mar; 18(6): 1378–91

    PubMed  CAS  Google Scholar 

  68. Berenson JR, Hillner BE, Kyle RA, et al. American Society of Clinical Oncology clinical practice guidelines: the role of bisphosphonates in multiple myeloma. J Clin Oncol 2002 Sep; 20(17): 3719–36

    Article  PubMed  Google Scholar 

  69. O’Rourke N, McCloskey E, Houghton F, et al. Double-blind, placebo-controlled, dose-response trial of oral clodronate in patients with bone metastases. J Clin Oncol 1995 Apr; 13(4): 929–34

    PubMed  Google Scholar 

  70. Robertson AG, Reed NS, Ralston SH. Effect of oral clodronate on metastatic bone pain: a double-blind, placebo-controlled study. J Clin Oncol 1995 Sep; 13(9): 2427–30

    PubMed  CAS  Google Scholar 

  71. Rosen L, Gordon D, Tchekmedyian S, et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomised trial — The Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol 2003 Aug; 21(16): 3150–7

    Article  PubMed  CAS  Google Scholar 

  72. Adami S, Salvagno G, Guarrera G, et al. Dichloromethylene-diphosphonate in patients with prostatic carcinoma metastatic to the skeleton. J Urol 1985 Dec; 134(6): 1152–4

    PubMed  CAS  Google Scholar 

  73. Adami S. Bisphosphonates in prostate carcinoma. Cancer 1997 Oct 15; 80(8 Suppl.): 1674–9

    Article  PubMed  CAS  Google Scholar 

  74. Carey PO, Lippert MC. Treatment of painful prostatic bone metastases with oral etidronate disodium. Urology 1988 Nov; 32(5): 403–7

    Article  PubMed  CAS  Google Scholar 

  75. Cresswell SM, English PJ, Hall RR, et al. Pain relief and quality-of-life assessment following intravenous and oral clodronate in hormone-escaped metastatic prostate cancer. Br J Urol 1995 Sep; 76(3): 360–5

    Article  PubMed  CAS  Google Scholar 

  76. Kylmala T, Tammela TL, Lindholm TS, et al. The effect of combined intravenous and oral clodronate treatment on bone pain in patients with metastatic prostate cancer. Ann Chir Gynaecol 1994; 83(4): 316–9

    PubMed  CAS  Google Scholar 

  77. Pelger RC, Hamdy NA, Zwinderman AH, et al. Effects of the bisphosphonate olpadronate in patients with carcinoma of the prostate metastatic to the skeleton. Bone 1998 Apr; 22(4): 403–8

    Article  PubMed  Google Scholar 

  78. Smith Jr JA. Palliation of painful bone metastases from prostate cancer using sodium etidronate: results of a randomized, prospective, double-blind, placebo-controlled study. J Urol 1989 Jan; 141(1): 85–7

    PubMed  Google Scholar 

  79. Strang P, Nilsson S, Brandstedt S, et al. The analgesic efficacy of clodronate compared with placebo in patients with painful bone metastases from prostatic cancer. Anticancer Res 1997 Nov 1997 Dec 31; 17(6D): 4717–21

    PubMed  CAS  Google Scholar 

  80. Kylmala T, Taube T, Tammela TL, et al. Concomitant i.v. and oral clodronate in the relief of bone pain: a double-blind placebo-controlled study in patients with prostate cancer. Br J Cancer 1997; 76(7): 939–42

    Article  PubMed  CAS  Google Scholar 

  81. Lipton A, Small E, Saad F, et al. The new bisphosphonate, ZOMETA® (zoledronic acid) decreases skeletal complications in both lytic and blastic lesions: a comparison to pamidronate [abstract 34]. Cancer Invest 2001; 20Suppl. 2: 45–7

    Google Scholar 

  82. Berruti A, Dogliotti L, Tucci M, et al. Metabolic bone disease induced by prostate cancer: rationale for the use of bisphosphonates. J Urol 2001 Dec; 166(6): 2023–31

    Article  PubMed  CAS  Google Scholar 

  83. Berenson JR, Rosen LS, Howell A, et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases: a double-blind, randomized dose-response study [published erratum appears in Cancer 2001; 91: 1956]. Cancer 2001 Apr 1; 91(7): 1191–200

    Article  PubMed  CAS  Google Scholar 

  84. Saad F, Gleason D, MurrayR, et al. Zoledronic acid improves markers of bone resorption and bone formation in prostate cancer patients with osteoblastic bone metastases. 3rd North American Symposium: Skeletal Complications of Malignancy; 2002 Apr 25–27; Bethesda (MD)

  85. Kanis JA, Powles T, Paterson AH, et al. Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone 1996 Dec; 19(6): 663–7

    Article  PubMed  CAS  Google Scholar 

  86. Diel IJ, Solomayer EF, Costa SD, et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 1998 Aug 6; 339(6): 357–63

    Article  PubMed  CAS  Google Scholar 

  87. Powles TJ, Paterson AHG, Nevantaus A, et al. Adjuvant clodronate reduces the incidence of bone metastases in patients with primary operable breast cancer [abstract 468]. Proc Am Soc Clin Oncol 1998; 17: 123a

    Google Scholar 

  88. Powles T, Paterson S, Kanis JA, et al. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol 2002 Aug 1; 20(15): 3219–24

    Article  PubMed  CAS  Google Scholar 

  89. Saarto T, Blomqvist C, Virkkunen P, et al. Adjuvant clodronate treatment does not reduce the frequency of skeletal metastases in node-positive breast cancer patients: 5-year results of a randomized controlled trial. J Clin Oncol 2001 Jan 1; 19(1): 10–7

    PubMed  CAS  Google Scholar 

  90. National Surgical Adjuvant Breast and Bowel Project. Information on protocol B34 [online]. Available from URL: http://http://www.nsabp.pitt.edu/B34_Information.htm [Accessed 2003 Nov 7]

  91. Lipton A, Theriault RL, Hortobagyi GN, et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer 2000 Mar 1; 88(5): 1082–90

    Article  PubMed  CAS  Google Scholar 

  92. Diel IJ, Lichinitser MR, Body JJ, et al. Improvement of bone pain, quality of life, and survival time of breast cancer patients with metastatic bone disease treated with intravenous ibandronate [abstract 269]. Eur J Cancer 1999; 35Suppl. 4: S83

    Article  Google Scholar 

  93. Dearnaley DP, Sydes MR. Preliminary evidence that oral clodronate delays symptomatic progression of bone metastases from prostate cancer: first results of the MRC Pr05 trial [abstract 693]. Proc Am Soc Clin Oncol 2001; 20: 174a

    Google Scholar 

  94. Mundy GR, Ibbotson KJ, D’Souza SM, et al. The hypercalcemia of cancer: clinical implications and pathogenic mechanisms. N Engl J Med 1984 Jun 28; 310(26): 1718–27

    Article  PubMed  CAS  Google Scholar 

  95. Vassilopoulou-Sellin R, Newman BM, Taylor SH, et al. Incidence of hypercalcemia in patients with malignancy referred to a comprehensive cancer center. Cancer 1993 Feb 15; 71(4): 1309–12

    Article  PubMed  CAS  Google Scholar 

  96. Watters J, Gerrand G, Dodwell D. The management of malignant hypercalcaemia. Drugs 1996 Dec; 52(6): 837–48

    Article  PubMed  CAS  Google Scholar 

  97. CancerNet™. Hypercalcemia (PDQ®) Supportive Care-Health Professionals [online]. Available from URL: http://http://cancernet.nci.nih.gov/cgi-bin/srchcgi.exe?.DBID=pdq&TYPE=search&SFMT=pdq_statement/1/0/0&Z208=208_04462H. [Accessed 2001 Jul 23]

  98. Stewart AF, Horst R, Deftos LJ, et al. Biochemical evaluation of patients with cancer-associated hypercalcemia: evidence for humoral and nonhumoral groups. N Engl J Med 1980 Dec 11; 303(24): 1377–83

    Article  PubMed  CAS  Google Scholar 

  99. Grill V, Martin TJ. Hypercalcemia. In: Rubens RD, Mundy GR, editors. Cancer and the skeleton. London: Martin Dunitz Ltd, 2000: 75–89

    Google Scholar 

  100. Flores JF, Rude RK, Chapman RA, et al. Evaluation of a 24-hour infusion of etidronate disodium for the treatment of hypercalcemia of malignancy. Cancer 1994 May 15; 73(10): 2527–34

    Article  PubMed  CAS  Google Scholar 

  101. Meunier PJ, Chapuy MC, Delmas P, et al. Intravenous disodium etidronate therapy in Paget’s disease of bone and hypercalcemia of malignancy: effects on biochemical parameters and bone histomorphometry. Am J Med 1987 Feb 23; 82(2A): 71–8

    Article  PubMed  CAS  Google Scholar 

  102. Bounameaux HM, Schifferli J, Montani JP, et al. Renal failure associated with intravenous diphosphonates [letter]. Lancet 1983 Feb 26; I(8322): 471

    Article  Google Scholar 

  103. Thiebaud D, Jaeger P, Jacquet AF, et al. A single-day treatment of tumor-induced hypercalcemia by intravenous amino-hydroxypropylidene bisphosphonate. J Bone Miner Res 1986 Dec; 1(6): 555–62

    Article  PubMed  CAS  Google Scholar 

  104. Thiébaud D, Jaeger PH, Jacquet AF, et al. Dose-response in the treatment of hypercalcemia of malignancy by a single infusion of the biphosphonate AHPrBP. J Clin Oncol 1988 May; 6(5): 762–8

    PubMed  Google Scholar 

  105. Gucalp R, Ritch P, Wiernik PH, et al. Comparative study of pamidronate disodium and etidronate disodium in the treatment of cancer-related hypercalcemia. J Clin Oncol 1992 Jan; 10(1): 134–42

    PubMed  CAS  Google Scholar 

  106. Roussou P, Mitromaras A, Michalaki B, et al. Safety and efficacy of the new bisphosphonate ibandronic acid in the management of bone metastasis following rapid infusion [abstract 2156]. Proc Am Soc Clin Oncol 2001; 20: 101b

    Google Scholar 

  107. Major P, Lortholary A, Hon J, et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001 Jan 15; 19(2): 558–67

    PubMed  CAS  Google Scholar 

  108. Daley-Yates PT, Dodwell DJ, Pongchaidecha M, et al. The clearance and bioavailability of pamidronate in patients with breast cancer and bone metastases. Calcif Tissue Int 1991 Dec; 49(6): 433–5

    Article  PubMed  CAS  Google Scholar 

  109. Lufkin EG, Argueta R, Whitaker MD, et al. Pamidronate: an unrecognized problem in gastrointestinal tolerability. Osteoporos Int 1994 Nov; 4(6): 320–2

    Article  PubMed  CAS  Google Scholar 

  110. de Groen PC, Lubbe DF, Hirsch LJ, et al. Esophagitis associated with the use of alendronate. N Engl J Med 1996 Oct 3; 335(14): 1016–21

    Article  PubMed  Google Scholar 

  111. Kanis JA, Gray RE. Long-term follow-up observations on treatment in Paget’s disease of bone. Clin Orthop 1987 Apr; (217): 99–125

  112. Vilimovskij A. Renal safety and tolerability of 90mg of Aredia (pamidronate) administered as an intravenous 1 hour infusion: preliminary results [abstract 2223]. Proc Am Soc Clin Oncol 1999; 18: 576a

    Google Scholar 

  113. Berenson J, Webb I, Henick K, et al. A phase II dose-ranging trial of single-agent pamidronate for relapsed/refractory multiple myeloma [abstract 436]. Blood 1998; 92(10 Suppl. 1): 107a

    Google Scholar 

  114. Ford JM, Tyrell C, Madson E, et al. Absence of renal toxicity in cancer patients with bone metastases receiving rapid intravenous infusions of Aredia (pamidronate disodium) [abstract]. Bone Miner 1994; 25Suppl. 1: S85

    Google Scholar 

  115. Gnan M, Hausmaninger H, Samonigg H, et al. Changes in bone mineral density caused by anastrozole or tamoxifen in combination with goserelin (± zoledronate) as adjuvant treatment for hormone receptor-positive premenopausal breast cancer: results of a randomized multicenter trial [abstract 12]. 25th Annual San Antonio Breast Cancer Symposium; 2002 Dec 11–14, San Antonio; Texas

  116. Delmas PD, Balena R, Confravreux E, et al. Bisphosphonate risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: a double-blind, placebo-controlled study. J Clin Oncol 1997 Mar; 15(3): 955–62

    PubMed  CAS  Google Scholar 

  117. Smith MR, McGovern FJ, Zietman AL, et al. Pamidronate to prevent bone loss during androgen-deprivation therapy for prostate cancer. N Engl J Med 2001 Sep 27; 345(13): 948–55

    Article  PubMed  CAS  Google Scholar 

  118. Smith MR, Eastham J, Gleason DM, et al. Randomized controlled trial of zoledronic acid to prevent bone loss in men receiving androgen deprivation therapy for nonmetastatic prostate cancer. J Urol 2003 Jun; 169(6): 2008–12

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipton, A. Management of Metastatic Bone Disease and Hypercalcemia of Malignancy. Am J Cancer 2, 427–438 (2003). https://doi.org/10.2165/00024669-200302060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200302060-00004

Keywords

Navigation