Skip to main content
Log in

Post-peak fatigue performance of steel fiber reinforced concrete under flexure

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The present paper deals with an experimental study on the fatigue behavior under bending of plain and steel fiber reinforced concrete (SFRC). Notched beams were tested under three point bending test: both monotonic and fatigue tests on pre-cracked specimens (in which a fracture process zone was present) were performed. In order to quantify the influence of fiber reinforcement on the fatigue performance of SFRC, two volume fractions of fibers (0.5 and 1.0 %) and three fatigue load levels were adopted. Test results are compared in terms of cyclic creep curves and Wöhler diagrams, crack opening rate, toughness and energy dissipation. Experimental results show that the fatigue deformations at failure match the monotonic stress–strain curves with a good agreement. Fibers seem to improve the fatigue life of concrete, whereas their effectiveness tends to decrease under high-cycle fatigue. In both cases, however, the addition of fibers ensures an increase of the energy dissipation at failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CMOD:

Crack mouth opening displacement

CMOD0 :

Crack mouth opening displacement of the first cycle

CMODi :

Crack mouth opening displacement of the i-th cycle

CMODlow :

Crack mouth opening displacement at the lower load level applied in the cyclic stage

CMODu :

Crack mouth opening displacement of the last cycle

CMODupp :

Crack mouth opening displacement at the upper load level applied in the cyclic stage

CTOD:

Crack tip opening displacement

dCMOD/dn:

Crack mouth opening rate

D max :

Maximum aggregate diameter

E c :

Concrete elastic modulus

E cum :

Total energy dissipated, cumulative energy

E diss,i :

Energy dissipated at each cycle

f cm :

Mean cylindrical compressive concrete strength

f cm,cube :

Mean cubic compressive concrete strength

f ctm :

Mean cylindrical tensile concrete strength

f Lk :

Characteristic value of limit of proportionality

f Lm :

Mean value of limit of proportionality

f Rjk :

Characteristic flexural tensile strength of fiber reinforced concrete corresponding to CMOD = CMODj

f Rjm :

Mean residual flexural tensile strength of fiber reinforced concrete corresponding to CMOD = CMODj

h cyl :

Height of cylindrical concrete sample

L f :

Fiber length

L f/ϕ f :

Fiber aspect ratio

LPD:

Load point displacement

N i :

Numbers of cycles at CMODi

N max :

Numbers of cycles at failure

P low :

Lower load level applied to the notched beam in the cyclic stage

P max :

Maximum load applied to the notched beam

P max,Nmax :

Maximum applied load when reaching the envelope curve

P upp :

Upper load level applied to the notched beam in the cyclic stage

R 2 :

Coefficient of determination

S :

Ratio between P upp and P max

V f :

Volume fraction of fibers

ΔCMOD:

Crack mouth opening range

ϕ cyl :

Diameter of cylindrical concrete sample

ϕ f :

Fiber diameter

References

  1. Di Prisco M, Felicetti R, Plizzari GA (eds) Fibre-reinforced concrete (FRC). In: Proceedings of the 6th International RILEM Symposium (BEFIB 2004), Varenna, Italy, 20–22 Sept 2004, Bagneux—France: RILEM Publications s.a.r.l., 2004, ISBN 2-912143-51-9, p 1516

  2. Gettu R (ed) Fibre reinforced concrete: design and applications. In: Proceedings of the 7th International RILEM Symposium (BEFIB 2008), Chennai, India, 17–19 Sept 2008, Bagneux—France: RILEM Publications s.a.r.l., 2008, ISBN: 978-2-35158-064-6, p 1153

  3. Barros JAO et al (eds) Fibre reinforced concrete: challenges and opportunities, CD & Proceeding book of abstracts of the 8th RILEM International Symposium (BEFIB 2012), Guimarães, Portugal, 19–21 Sept 2012, Bagneux—France: RILEM Publications s.a.r.l., ISBN: 978-2-35158-132-2; e-ISBN: 978-2-35158-133-9, p 314

  4. Tiberti G, Minelli F, Plizzari G (2015) Cracking behavior in reinforced concrete members with steel fibers: a comprehensive experimental study. Cem Concr Res 68:24–34. doi:10.1016/j.cemconres.2014.10.011

    Article  Google Scholar 

  5. Plizzari GA, Tiberti G. Structural behavior of SFRC tunnel segments. In: Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Catania (Italy) 17–22 June 2007, vol 3, p 1577–1584. ISBN 978-0-415-44066-0

  6. Meda A, Plizzari GA (2004) A new design approach for SFRC slabs on grade based on fracture mechanics. ACI Struct J 101(3):298–303

    Google Scholar 

  7. Belletti B, Cerioni R, Meda A, Plizzari G (2008) Design aspects on steel fiber reinforced concrete pavements. ASCE J Mater Civ Eng 20(9):599–607. doi:10.1061/(ASCE)0899-1561(2008)20:9(599)

    Article  Google Scholar 

  8. Krstulovic-Opara N, Haghayeghi AR, Haidar M, Krauss PD (1995) Use of conventional and high-performance steel-fiber reinforced concrete for bridge deck overlays. ACI Mater J 92(6):669–677

    Google Scholar 

  9. Germano F, Tiberti G, Plizzari G, Colombo A (2015) Experimental behavior of precast HSFRC columns in steel socket foundation under cyclic loads. Eng Struct 102:230–248. doi:10.1016/j.engstruct.2015.07.052

    Article  Google Scholar 

  10. Germano F, Tiberti G, Plizzari G (2016) Experimental behavior of SFRC columns under uniaxial and biaxial cyclic loads. Compos Part B Eng 85:76–92. doi:10.1016/j.compositesb.2015.09.010

    Google Scholar 

  11. Caballero-Morison KE, Bonet JL, Navarro-Gregori J, Martí-Vargas JR (2012) Behaviour of steel fibre—reinforced normal—strength concrete slender columns under cyclic loading. Eng Struct 39:162–175. doi:10.1016/j.engstruct.2012.02.003

    Article  Google Scholar 

  12. Zanotti C (2014) High performance FRC for R/C structure strengthening, Università degli Studi di Brescia—DICATAM Quaderni del Dottorato 3, Rome (Italy), Jan 2014, Aracne Editrice, p 232, ISBN 978-88-548-7008-6

  13. ACI Committee 215 (1992) Consideration for design of concrete structures subjected to fatigue loading. ACI Journal 1992, Proceedings; 71(3): 97–121

  14. RILEM Committee 36-RDL (1984) Long-term random dynamic loading of concrete structures. RILEM Mater Struct 17(97):1–28

    Google Scholar 

  15. Comité Euro-International Du Béton (CEB) (1988) Fatigue of concrete structures—state of the art report. Bullettin d’Information 188:1–75

    Google Scholar 

  16. Holmen JO (1979) Fatigue of concrete by constant and variable amplitude loading. PhD thesis, Division of Concrete Structures, Norwegian Institute of Technology, University of Trondheim, p 218

  17. Hsu TTC (1981) Fatigue of plain concrete. ACI J 78:292–305

    Google Scholar 

  18. Reinhardt HW (1984) Fracture mechanics of elastic softening material like concrete. Heron 29(2):43

    Google Scholar 

  19. Saito M (1987) Characteristics of microcracking in concrete under static and repeated tensile loading. Cem Concr Res 17:211–218

    Article  Google Scholar 

  20. Cornelissen HAW, Reinhardt HW (1984) Uniaxial tensile fatigue failure of concrete under constant-amplitude and programme loading. Mag Concr Res 36(129):216–226. doi:10.1680/macr.1984.36.129.216

    Article  Google Scholar 

  21. Hordijk DA (1991) Local approach to fatigue of concrete, PhD thesis, Delft University of Technology 1991, p 210, ISBN 90-9004519-8

  22. Slowik V, Plizzari GA, Saouma V (1996) Fracture of concrete under variable amplitude fatigue loading. ACI Mater J 93(3):272–283

    Google Scholar 

  23. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782

    Article  Google Scholar 

  24. Lee MK, Barr BIG (2004) An overview of the fatigue behaviour of plain and fiber reinforced concrete. Cem Concr Compos 26:299–305. doi:10.1016/S0958-9465(02)00139-7

    Article  Google Scholar 

  25. Cachim PB, Figueiras JA, Pereira PAA (2002) Fatigue behavior of fiber-reinforced concrete in compression. Cem Concr Compos 24(2):211–217. doi:10.1016/S0958-9465(01)00019-1

    Article  MATH  Google Scholar 

  26. Yin W, Hsu TTC (1995) fatigue behavior of steel fiber reinforced concrete in uniaxial and biaxial compression. ACI Mater J 92(1):71–80

    Google Scholar 

  27. Grzybowski M, Meyer C (1993) Damage accumulation in concrete with and without fiber reinforcement. ACI Mater J 90(6):594–604

    Google Scholar 

  28. Otter DE, Naaman AE (1988) Properties of steel fiber reinforced concrete under cyclic loading. ACI Mater J 85(4):254–261

    Google Scholar 

  29. Zhang J, Stang H (1998) Fatigue performance in flexure of fiber reinforced concrete. ACI Mater J 95(1):58–67

    Google Scholar 

  30. Johnston CD, Zemp RW (1991) Flexural fatigue performance of steel fiber reinforced concrete—influence of fiber content, aspect ratio, and type. ACI Mater J 88(4):374–383

    Google Scholar 

  31. Plizzari GA, Cangiano S, Alleruzzo S (1997) The fatigue behaviour of cracked concrete. Fatigue Fract Eng Mater Struct 20(8):1195–1206

    Article  Google Scholar 

  32. Plizzari GA, Cangiano S, Cere N (2000) Post-peak behavior of fiber-reinforced concrete under cyclic tensile loads. ACI Mater J 97(2):182–192

    Google Scholar 

  33. European Committee for Standardization. Eurocode 2: design of concrete structures—part 1: general rules and rules for buildings (EN 1992-1-1); 2004

  34. EN 197-1:2000/A3:2007. Cement—part 1: composition, specifications and conformity criteria for common cements

  35. Bolomey J (1948) Granulation continue ou discontinue des Bétons. Revue des Matériaux de Constructions & Travaux Publix 48:218–219

    Google Scholar 

  36. ACI Committee 544. Guide for specifying, proportioning, mixing, placing and finishing steel fiber reinforced concrete. ACI Report 544.3R-93, American Concrete Institute 1998, p 10

  37. Kooiman AG (2000) Modelling steel fiber reinforced concrete for structural design, Ph.D-thesis, Department of Structural and Building Engineering, Delft University of Technology, 2000. ISBN 90-73235-60-X

  38. UNI 6556. Testing concrete. Determination of Secant Modulus of Elasticity in compression, 1976, 3 p

  39. EN 12350-2. Testing fresh concrete—part 2: slump-test, 2009

  40. EN 14651. Test method for metallic fibre concrete—measuring the flexural tensile strength (limit of proportionally (LOP), residual). European Committee for Standardization; 2005, p 18

  41. International Federation for Structural Concrete (fib). Model code 2010, Final Complete Draft, fib bulletins 65 and 66, March 2012-ISBN 978-2-88394-105-2 and April 2012-ISBN 978-2-88394-106-9 (2012)

  42. Germano F (2014) Cyclic behavior of steel fiber reinforced concrete: from material to seismic columns, Università degli Studi di Brescia—DICATAM Quaderni del Dottorato 5, Rome (Italy), July 2014, Aracne Editrice, p 364, ISBN 978-88-548-7003-1

  43. Spark PR (1982) The influence of rate of loading and material variability on the fatigue characteristics of concrete. ACI Spec Publ 75:331–342

    Google Scholar 

Download references

Acknowledgments

A special acknowledgement goes to Eng. M. Pezzola, Eng. M. Arici, Eng. F. Donarini and Eng. L. Manfrin, in carrying out the experimental tests and data processing. Sincere thanks are extended to the technicians A. Botturi, D. Caravaggi, A. Delbarba of the structural laboratory of the University of Brescia, for their support in the experimental activities. The Authors are also thankful to Bekaert Corp. for providing the fiber reinforcement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Tiberti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germano, F., Tiberti, G. & Plizzari, G. Post-peak fatigue performance of steel fiber reinforced concrete under flexure. Mater Struct 49, 4229–4245 (2016). https://doi.org/10.1617/s11527-015-0783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0783-3

Keywords

Navigation