Skip to main content
Log in

Role of the intensity of high-temperature electron irradiation in accumulation of vacancy-oxygen defects in Cz n-Si

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Kinetics of accumulation of oxygen–vacancy complexes, which is the dominant radiation-induced structural defect in the monocrystalline n-type Czochralski (Cz) silicon was studied experimentally and theoretically for silicon samples irradiated with electron beam pulses of various intensities and energies at 360 °C. The irradiation intensity was shown to have no effect on oxygen–vacancy complexes formation at temperatures when the complexes were unstable, but the complexes annealing efficiency revealed significant dependence on the electron beam intensity. In contrast, the electron beam energy affected the formation rate of vacancies themselves and their complexes with oxygen, but it did not influence annealing properties of oxygen–vacancy complexes. It occurred that the complexes generated in silicon at room temperature could be annealed at 360 °C much faster if irradiated with the electron beam during annealing. The results suggested an important role of radiation-induced ionization of a silicon crystal in transformation of oxygen–vacancy complexes into even more loaded complexes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Most of the data generated or analyzed during this study are included in the published article.

References

  1. J.-G. Xu, F. Lu, H.-H. Sun, Electrical and optical properties of defects in silicon introduced by high-temperature electron irradiation. Phys. Rev. B 38, 3395 (1988)

    Article  CAS  Google Scholar 

  2. J. Lalita, B.G. Svensson, C. Jagadish, Point-defects observed in crystalline silicon implanted by Mev si ions at elevated-temperatures. Nucl. Instrum. Methods Phys. Res. 96(1–2), 210 (1995). https://doi.org/10.1016/0168-583X(94)00484-6

    Article  CAS  Google Scholar 

  3. V.B. Neimash, M.M. Kras’ko, A.M. Kraitchinskii, Generation of radiation and thermal defects in silicon during hot electron irradiation. Ukrayins’kij Fyizichnij Zhurnal (Kiev) 47(1), 50 (2002)

    CAS  Google Scholar 

  4. J.L. Lindström, L.I. Murin, T. Hallberg, V.P. Markevich, B.G. Svensson, M. Kleverman, J. Hermansson, Defect engineering in Czochralski silicon by electron irradiation at different temperatures. Nucl. Instrum. Methods Phys. Rev. B 186, 121 (2002)

    Article  Google Scholar 

  5. E. Simoen, J.M. Rafi, C. Claeys, V. Neimash, A. Kraitchinskii, M. Kras’ko, V. Tishchenko, V. Voytovych, J. Versluys, P. Clauws, Deep levels in high-temperature 1 MeV electron-irradiated n-type Czochralski silicon. Jpn. J. Appl. Phys. 42, 7184 (2003)

    Article  CAS  Google Scholar 

  6. E. Simoen, C. Claeys, V. Neimash, A. Kraitchinskii, M. Kras’ko, V. Tishchenko, V. Voytovych, A deep level study of high-temperature electron-irradiated n-type silicon. Solid State Phenom. 95–96, 367 (2004)

    Google Scholar 

  7. V. Neimash, M. Kras’ko, A. Kraitchinskii, V. Voytovych, V. Tishchenko, E. Simoen, J.M. Rafi, C. Claeys, J. Versluys, O. De Gryse, P. Clauws, DLTS studies of high-temperature electron irradiated Cz n-Si. Phys. Stat. Sol. (a) 201, 509 (2004)

    Article  CAS  Google Scholar 

  8. V.P. Markevich, A.R. Peaker, S.B. Lastovskii, V.E. Gusakov, I.F. Medvedeva, L.I. Murin, Formation of radiation-induced defects in Si crystals irradiated with electrons at elevated temperatures. Solid State Phenom. 156–158, 299 (2010)

    Google Scholar 

  9. D.C. Schmidt, B.G. Svensson, J.L. Lindström, S. Godey, E. Ntsoenzok, J.F. Barbot, C. Blanchard, 2 MeV electron irradiation of silicon at elevated temperatures: Influence on platinum diffusion and creation of electrically active defects. J. Appl. Phys. 85, 3556 (1999)

    Article  CAS  Google Scholar 

  10. H. Ohyama, K. Takakura, H. Matsuoka, T. Jono, E. Simoen, C. Claeys, J. Uemura, T. Kishikawa, Radiation damage induced in Si photodiodes by high-temperature neutron irradiation. J. Mater. Sci. Mater. Electron. 14, 437 (2003)

    Article  CAS  Google Scholar 

  11. H. Ohyama, K. Hayama, K. Takakura, T. Miura, K. Shigaki, T. Jono, E. Simoen, A. Poyai, C. Claeys, Influence of irradiation temperature on electron-irradiated STI Si diodes. J. Mater. Sci. Mater. Electron. 14, 451 (2003)

    Article  CAS  Google Scholar 

  12. M. Nakabayashi, H. Ohyama, N. Hanano, E. Simoen, C. Claeys, K. Takakura, T. Iwata, T. Kudou, M. Yoneoka, Effects of high temperature electron irradiation on trench-IGBT. J. Mater. Sci. Mater. Electron. 16, 463 (2005)

    Article  CAS  Google Scholar 

  13. V. Quemener, B. Raeissi, F. Herklotz, L.I. Murin, E.V. Monakhov, B.G. Svensson, Kinetics study of the evolution of oxygen-related defects in mono-crystalline silicon subjected to electron-irradiation and thermal treatment. J. Appl. Phys. 118, 135703 (2015)

    Article  Google Scholar 

  14. G.D. Watkins, J.W. Corbett, Defects in irradiated silicon. I. Electron spin resonance of the Si-A center. Phys. Rev. 121, 1001 (1961)

    Article  CAS  Google Scholar 

  15. E. Sonder, L.C. Templeton, Gamma irradiation of silicon. I. Levels in n-type material containing oxygen. J. Appl. Phys. 31, 1279 (1960)

    Article  CAS  Google Scholar 

  16. L.F. Makarenko, Re-evaluation of energy levels of oxygen–vacancy complex in n-type silicon crystals: I. Weak compensation. Semicond. Sci. Technol. 16(7), 619 (2001)

    CAS  Google Scholar 

  17. V.B. Neimash, V.V. Voitovych, M.M. Kras’ko, A.M. Kraitchinskii, O.M. Kabaldin, Y.V. Pavlovs’kyi, V.M. Tsmots, Formation of radiation-induced defects in n-Si with lead and carbon impurities. Ukrayins’kij Fyizichnij Zhurnal (Kiev) 11, 1273 (2005)

    Google Scholar 

  18. S.D. Brotherton, P. Bradley, Defect production and lifetime control in electron and irradiated silicon. J. Appl. Phys. 53, 5720 (1982)

    Article  CAS  Google Scholar 

  19. M. Kras’ko, A. Kolosiuk, V. Voitovych, V. Povarchuk, Lifetime control in irradiated and annealed Cz n-Si: Role of divacancy-oxygen defects. Phys. Stat. Sol. (a) 216, 1900290 (2019)

    Article  Google Scholar 

  20. S. Jin, P. Wang, Y. Qin, C. Cui, D. Yang, X. Yu, Effects of vacancy defects on the mechanical properties in neutron irradiated Czochralski silicon. J. Phys. Condens. Matter. 32, 275702 (2020)

    Article  CAS  Google Scholar 

  21. J.L. Lindström, L.I. Murin, V.P. Markevich, T. Hallberg, B.G. Svensson, Vibrational absorption from vacancy-oxygen-related complexes (VO, V2O, VO2) in irradiated silicon. Physica B 273–274, 291 (1999)

    Article  Google Scholar 

  22. J.W. Corbett, G.D. Watkins, R.S. McDonald, New oxygen infrared bands in annealed irradiated silicon. Phys. Rev. 135, A1381 (1964)

    Article  Google Scholar 

  23. X. Yu, L. Chen, P. Cheng, D. Yang, Quantitative study of the evolution of oxygen and vacancy complexes in Czochralski silicon. Appl. Phys. Express 5, 021302 (2012)

    Article  Google Scholar 

  24. B.G. Svensson, J.L. Lindström, Kinetic study of the 830- and 889-cm-1 infrared bands during annealing of irradiated silicon. Phys. Rev. B 34, 8709 (1986)

    Article  CAS  Google Scholar 

  25. L.I. Murin, J.L. Lindström, B.G. Svensson, V.P. Markevich, A.R. Peaker, C.A. Londos, VOn (n ≥ 3) defects in irradiated and heat-treated silicon. Solid State Phenom. 108–109, 267 (2005)

    Article  Google Scholar 

  26. V.V. Voronkov, R. Falster, C.A. Londos, The annealing mechanism of the radiation-induced vacancy-oxygen defect in silicon. J. Appl. Phys. 111, 113530 (2012)

    Article  Google Scholar 

  27. A. Chroneos, E.N. Sgourou, C.A. Londos, U. Schwingenschlögl, Oxygen defect processes in silicon and silicon germanium. Appl. Phys. Rev. 2, 021306 (2015)

    Article  Google Scholar 

  28. A. Abdurrazaq, A.T. Raji, W.E. Meyer, Effect of isovalent doping on hydrogen passivated vacancy-oxygen defect complexes in silicon: Insights from density functional theory. Silicon (2020). https://doi.org/10.1007/s12633-020-00548-5

    Article  Google Scholar 

  29. L.I. Murin, E.A. Tolkacheva, S.B. Lastovskii, V.P. Markevich, J. Mullins, A.R. Peaker, B.G. Svensson, Interaction of radiation-induced self-interstitials with vacancy-oxygen related defects VnO2 (n from 1 to 3) in silicon. Phys. Stat. Sol. (a) 216(10), 1800609 (2019)

    Article  Google Scholar 

  30. P. Dong, X. Yu, L. Chen, X. Ma, D. Yang, Effect of germanium doping on the formation kinetics of vacancy-dioxygen complexes in high dose neutron irradiated crystalline silicon. J. Appl. Phys. 122, 095704 (2017)

    Article  Google Scholar 

  31. P. Dong, P. Yang, M. Xie, Studies of annealing of point defects and their influence on the electrical degradation and recovery behaviors of heavily neutron irradiated silicon. Radiat. Eff. Defects Solids 173, 1018 (2018)

    Article  CAS  Google Scholar 

  32. Y. Qin, P. Wang, S. Jin, C. Cui, D. Yang, X. Yu, Effects of nitrogen doping on vacancy-oxygen complexes in neutron irradiated Czochralski silicon. Mater. Sci Semicond. Process 98, 65 (2019)

    Article  CAS  Google Scholar 

  33. A. Kraitchinskii, A. Kolosiuk, M. Kras’ko, V. Neimash, V. Voitovych, V. Makara, R. Petrunya, S. Putselyk, Vacancy generation in silicon in the temperature range 100–633 K under electron irradiation. Radiat. Eff. Defects Solids 166, 445 (2011)

    Article  CAS  Google Scholar 

  34. M. Krasko, A. Kraitchinskii, A. Kolosiuk, V. Neimash, V. Voitovych, V. Makara, R. Petrunya, V. Povarchuk, Accumulation of VO defects in n-Si at high-temperature pulse electron irradiation: generation and annealing kinetics, dependence on irradiation intensity. Solid State Phenom. 178–179, 404 (2011)

    Article  Google Scholar 

  35. J.C. Bourgoin, J.W. Corbett, H.L. Frisch, Ionization enhanced diffusion. J. Chem. Phys. 59, 4042 (1973)

    Article  CAS  Google Scholar 

  36. J.C. Bourgoin, J.W. Corbett, A new mechanism for interstitial migration. Phys. Lett. 38A, 135 (1972)

    Article  Google Scholar 

  37. R. Radu, I. Pintilie, L.C. Nistor, E. Fretwurst, G. Lindstroem, L.F. Makarenko, Investigation of point and extended defects in electron irradiated silicon—dependence on the particle energy. J. Appl. Phys. 117, 164503 (2015)

    Article  Google Scholar 

  38. S. Banerjee, A. Caner, S. Dutta, A. Khanov, F. Palla, G. Tonelli, Study of dE/dx measurements with the CMS tracker, CMS note 1999/056, October 22, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander O. Goushcha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (GIF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kras’ko, M.M., Kolosiuk, A.G., Neimash, V.B. et al. Role of the intensity of high-temperature electron irradiation in accumulation of vacancy-oxygen defects in Cz n-Si. Journal of Materials Research 36, 1646–1656 (2021). https://doi.org/10.1557/s43578-021-00152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00152-2

Keywords

Navigation