Skip to main content
Log in

Existence of Leukemic Clones Resistant to Both Imatinib Mesylate and Rituximab before Drug Therapies in a Patient with Philadelphia Chromosome-Positive Acute Lymphocytic Leukemia

  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Imatinib mesylate and rituximab are molecularly targeted drugs against the BCR-ABL fusion protein and the CD20 antigen, respectively. Although these drugs have excellent anticancer effects, a major concern is drug resistance. We have investigated the case of a patient with Philadelphia chromosome-positive and CD20+ acute lymphocytic leukemia who acquired resistance to imatinib and rituximab. Imatinib therapy resulted in prompt cytogenetic remission, but resistance developed shortly thereafter. Sequencing of the kinase domain of the ABL gene and allele-specific polymerase chain reaction analysis revealed a point mutation resulting in an E255V substitution that was present before the therapy. After the patient received mild chemotherapy followed by rituximab administration, hematologic and cytogenetic remission was sustained for 5.5 months. The recurrent leukemic cells after the rituximab therapy showed not only the E255V mutation in the ABL gene but also loss of the CD20 antigen due to impaired transcription of the CD20 gene. The results of 2-color flow cytometry analysis showed that a small population of CD20- leukemic cells existed before the imatinib therapy. These results suggest that leukemic subclones carrying a genetic perturbation of the targeted molecules for both imatinib and rituximab were present before the therapies. The preexistence of primary resistant clones suggests the inability of combination therapy with 2 molecularly targeted drugs to overcome drug resistance in leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kantarjian H, Sawyers C, Hochhaus A, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346:645–652.

    Article  CAS  Google Scholar 

  2. Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349:1423–1432.

    Article  PubMed  CAS  Google Scholar 

  3. Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344:1038–1042.

    Article  PubMed  CAS  Google Scholar 

  4. Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood. 2002;100:1965–1971.

    Article  PubMed  CAS  Google Scholar 

  5. Branford S, Rudzki Z, Walsh S, et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002;99:3472–3475.

    Article  PubMed  CAS  Google Scholar 

  6. Mathas S, Rickers A, Bommert K, Dorken B, Mapara MY. Anti- CD20- and B-cell receptor-mediated apoptosis: evidence for shared intracellular signaling pathways. Cancer Res. 2000;60:7170–7176.

    PubMed  CAS  Google Scholar 

  7. Bannerji R, Kitada S, Flinn IW, et al. Apoptotic-regulatory and complement-protecting protein expression in chronic lymphocytic leukemia: relationship to in vivo rituximab resistance. J Clin Oncol. 2003;21:1466–1471.

    Article  PubMed  CAS  Google Scholar 

  8. Jandula BM, Nomdedeu J, Marin P, Vivancos P. Rituximab can be useful as treatment for minimal residual disease in bcr-abl-positive acute lymphoblastic leukemia. Bone Marrow Transplant. 2001;27:225–227.

    Article  PubMed  CAS  Google Scholar 

  9. Corbacioglu S, Eber S, Gungor T, Hummerjohann J, Niggli F. Induction of long-term remission of a relapsed childhood B-acute lymphoblastic leukemia with rituximab chimeric anti-CD20 monoclonal antibody and autologous stem cell transplantation. J Pediatr Hematol Oncol. 2003;25:327–329.

    Article  PubMed  Google Scholar 

  10. Gokbuget N, Hoelzer D. Treatment with monoclonal antibodies in acute lymphoblastic leukemia: current knowledge and future prospects. Ann Hematol. 2004;83(suppl 1):S129-S131.

    PubMed  Google Scholar 

  11. Foran JM, Norton AJ, Micallef IN, et al. Loss of CD20 expression following treatment with rituximab (chimaeric monoclonal anti-CD20): a retrospective cohort analysis. Br J Haematol. 2001;114:881–883.

    Article  PubMed  CAS  Google Scholar 

  12. Kennedy GA, Tey SK, Cobcroft R, et al. Incidence and nature of CD20-negative relapses following rituximab therapy in aggressive B-cell non-Hodgkin’s lymphoma: a retrospective review. Br J Haematol. 2002;119:412–416.

    Article  PubMed  CAS  Google Scholar 

  13. Chu PG, Chen YY, Molina A, Arber DA, Weiss LM. Recurrent B- cell neoplasms after rituximab therapy: an immunophenotypic and genotypic study. Leuk Lymphoma. 2002;43:2335–2341.

    Article  PubMed  Google Scholar 

  14. Hofmann WK, Jones LC, Lemp NA, et al. Ph+ acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood. 2002;99:1860–1862.

    Article  PubMed  Google Scholar 

  15. Tedder TF, Klejman G, Schlossman SF, Saito H. Structure of the gene encoding the human B lymphocyte differentiation antigen CD20 (B1). J Immunol. 1989;142:2560–2568.

    PubMed  CAS  Google Scholar 

  16. Himmelmann A, Riva A, Wilson GL, Lucas BP, Thevenin C, Kehrl JH. PU.1/Pip and basic helix loop helix zipper transcription factors interact with binding sites in the CD20 promoter to help confer lineage- and stage-specific expression of CD20 in B lymphocytes. Blood. 1997;90:3984–3995.

    PubMed  CAS  Google Scholar 

  17. Azam M, Latek RR, Daley GQ. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR- ABL. Cell. 2003;112:831–843.

    Article  PubMed  CAS  Google Scholar 

  18. von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet. 2002;359:487–491.

    Article  Google Scholar 

  19. Corbin AS, La Rosee P, Stoffregen EP, Druker BJ, Deininger MW. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood. 2003;101:4611–4614.

    Article  PubMed  CAS  Google Scholar 

  20. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can preexist to the onset of treatment. Blood. 2002;100:1014–1018.

    Article  PubMed  CAS  Google Scholar 

  21. Roche-Lestienne C, Lai JL, Darre S, Facon T, Preudhomme C. A mutation conferring resistance to imatinib at the time of diagnosis of chronic myelogenous leukemia. N Engl J Med. 2003;348:2265–2266.

    Article  PubMed  Google Scholar 

  22. Hofmann WK, Komor M, Wassmann B, et al. Presence of the BCR- ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood. 2003;102:659–661.

    Article  PubMed  CAS  Google Scholar 

  23. Bohen SP, Troyanskaya OG, Alter O, et al. Variation in gene expression patterns in follicular lymphoma and the response to rituximab. Proc NatlAcad Sci USA. 2003;100:1926–1930.

    Article  CAS  Google Scholar 

  24. Kinoshita T, Nagai H, Murate T, Saito H. CD20-negative relapse in B-cell lymphoma after treatment with rituximab. J Clin Oncol. 1998;16:3916.

    Article  PubMed  CAS  Google Scholar 

  25. Davis TA, Czerwinski DK, Levy R. Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clin Cancer Res. 1999;5:611–615.

    CAS  Google Scholar 

  26. Schmitz K, Brugger W, Weiss B, Kaiserling E, Kanz L. Clonal selection of CD20-negative non-Hodgkin's lymphoma cells after treatment with anti-CD20 antibody rituximab. Br J Haematol. 1999;106:571–572.

    Article  CAS  Google Scholar 

  27. Haidar JH, Shamseddine A, Salem Z, et al. Loss of CD20 expression in relapsed lymphomas after rituximab therapy. Eur J Haematol. 2003;70:330–332.

    Article  PubMed  Google Scholar 

  28. Alvaro-Naranjo T, Jaen-Martinez J, Guma-Padro J, Bosch-Princep R, Salvado-Usach MT CD20-negative DLBCL transformation after rituximab treatment in follicular lymphoma: a new case report and review of the literature. Ann Hematol. 2003;82:585–588.

    Article  PubMed  CAS  Google Scholar 

  29. Johnson B, Brooks BA, Heinzmann C, et al. The Ah receptor nuclear translocator gene (ARNT) is located on q21 of human chromosome 1 and on mouse chromosome 3 near Cf-3. Genomics. 1993;17:592–598.

    Article  PubMed  CAS  Google Scholar 

  30. Salomon-Nguyen F, Della-Valle V, Mauchauffe M, et al. The t(1;12) (q21;p13) translocation of human acute myeloblastic leukemia results in a TEL-ARNT fusion. Proc Natl Acad Sci USA. 2000;97:6757–6762.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Hato.

About this article

Cite this article

Hato, T., Yamanouchi, J., Tamura, T. et al. Existence of Leukemic Clones Resistant to Both Imatinib Mesylate and Rituximab before Drug Therapies in a Patient with Philadelphia Chromosome-Positive Acute Lymphocytic Leukemia. Int J Hematol 80, 62–66 (2004). https://doi.org/10.1532/IJH97.04033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.04033

Key words

Navigation