Skip to main content

Histone Deacetylase 1

  • Chapter
Histone Deacetylases

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

HDAC1 was the first histone deacetylase identified in mammals and is considered the prototype of this large family of enzymes. Transcriptional repression mediated by HDAC1 plays a crucial role in the regulation of a variety of biological processes, including cell cycle progression, proliferation, and differentiation. Interestingly, HDAC1 can also influence other cellular activities, such as DNA replication and chromosome segregation, via mechanisms that do not involve transcriptional repression. In addition, HDAC1 is essential for embryonic development and appears to play a critical role in cellular defense against viral infection. Finally, increasing evidence points toward the importance of HDAC1 in tumor formation and/or progression, and cumulative observations indicate that the enzyme is a crucial target for HDAC inhibitors in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BRCA1:

Breast cancer 1 gene

CoREST:

Corepressor of RE1 silencing transcription factor

EED:

Embryonic ectoderm development protein

EZH2:

Enhancer of zeste homo log 2 (Drosophila)

HAT:

Histone acetyltransferase

HDA-1:

Histone deacetylase 1 (Yeast)

MAD:

MAX dimerization protein

MAX:

MYC-associated factor X

MBD3:

Methyl-CpG-binding domain protein 3

MDM2:

Mouse double minute 2

Mi-2-alpha:

Dermatomyositis-specific autoantigen 2 alpha, also called

(CHD3):

chromodomain helicase DNA-binding protein 3

Mi-2-beta:

Dermatomyositis-specific autoantigen 2 beta, also called

(CHD4):

chromodomain helicase DNA-binding protein 4

MTA1, MTA2:

Metastasis-associated gene 1, metastasis-associated gene 2

MYC:

Myelocytomatosis oncogene

NF-Y:

Nuclear transcription factor Y

P/CAF:

p300/CBP-associated factor

RPD3:

Reduced potassium dependency 3

SAP18:

SIN3-associated polypeptide, 18 KDa

SAP30:

SIN3-associated polypeptide, 30 KDa

SIN3:

SWI-independent 3

SP1:

SP3 Specific protein 1, specific protein 3

YY1:

Ying yang 1

References

  1. Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacety-lase. JBiol Chem 1993;268:22,429–22,435

    CAS  Google Scholar 

  2. Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 1995; 17:423–430

    PubMed  CAS  Google Scholar 

  3. Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 1996;272:408–411.

    PubMed  CAS  Google Scholar 

  4. Bartl S, Taplick J, Lagger G, Khier H, Kuchler K, Seiser C. Identification of mouse histone deacetylase 1 as a growth factor-inducible gene. Mol Cell Biol 1997;17:5033–5043.

    PubMed  CAS  Google Scholar 

  5. Furukawa Y, Kawakami T, Sudo K, et al. Isolation and mapping of a human gene (RPD3L1) that is homologous to RPD3, a transcription factor in Saccharomyces cerevisiae. Cytogenet Cell Genet 1996;73:130–133

    PubMed  CAS  Google Scholar 

  6. Vidal M, Gaber RF. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol 1991; 11:6317–6327

    PubMed  CAS  Google Scholar 

  7. Cress WD, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 2000; 184:1–16.

    PubMed  CAS  Google Scholar 

  8. Grozinger CM, Schreiber SL. Deacetylase enzymes: biological functions and the use of small-molecule inhibitors. Chem Biol 2002;9:3–16.

    PubMed  CAS  Google Scholar 

  9. Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 2004;338:17–31.

    PubMed  CAS  Google Scholar 

  10. Sun JM, Chen HY, Moniwa M, Samuel aDavie JR. Purification and characterization of chicken erythrocyte histone deacetylase 1. Biochemistry 1999;38: 5939–5947.

    PubMed  CAS  Google Scholar 

  11. Ladomery M, Lyons S, Sommerville J. Xenopus HDm, a maternally expressed histone deacetylase, belongs to an ancient family of acetyl-metabolizing enzymes. Gene 1997;198:275–280.

    PubMed  CAS  Google Scholar 

  12. Cunliffe VT.Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling.Development 2004;131:2983–2995

    Google Scholar 

  13. Rossi V, Hartings M, Motto M. Identification and characterization of an RPD3 homologue from maize (Zea mays L.) that is able to complement an rpd3 null mutant of Saccharomyces cerevisiae. Mol Gen Genet 1998;258:288–296

    PubMed  CAS  Google Scholar 

  14. Lechner T, Lusser A, Pipal A, et al. RPD3-type histone deacetylases in maize embryos. Biochemistry 2000;39:1683–1692.

    PubMed  CAS  Google Scholar 

  15. Khier H, Bartl S, Schuettengruber B, Seiser C. Molecular cloning and characterization of the mouse histone deacetylase 1 gene: integration of a retrovirus in 129SVmice. Biochim Biophys Acta 1999;1489:365–373.

    PubMed  CAS  Google Scholar 

  16. de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem 2003;370:737–749.

    Google Scholar 

  17. Hassig CA, Tong JK, Fleischer TC, et al. A role for histone deacetylase activity in HDAC 1-mediated transcriptional repression. Proc Natl Acad Sci U S A 1998;95:3519–3524.

    PubMed  CAS  Google Scholar 

  18. Taplick J, Kurtev V, Kroboth K, Posch M, Lechner T, Seiser C. Homo-oligomeri-sation and nuclear localisation of mouse histone deacetylase 1. J Mol Biol 2001;308:27–38.

    PubMed  CAS  Google Scholar 

  19. Lagger G, O’Carroll D, Rembold M, et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 2002;21: 2672–2681.

    PubMed  CAS  Google Scholar 

  20. Schuettengruber B, Simboeck E, Khier H, Seiser C. Autoregulation of mouse histone deacetylase 1 expression. Mol Cell Biol 2003;23:6993–7004.

    PubMed  CAS  Google Scholar 

  21. Hauser C, Schuettengruber B, Bartl S, Lagger G, Seiser C. Activation of the HDAC1 gene by cooperative histone phosphorylation and acetylation. Mol Cell Biol 2002;22:7820–7830.

    PubMed  CAS  Google Scholar 

  22. Marmorstein R. Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure (Camb) 2001;9:1127–1133.

    CAS  Google Scholar 

  23. Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 1998;391:597–601.

    PubMed  CAS  Google Scholar 

  24. Ferreira R, Magnaghi-Jaulin L, Robin P, Harel-Bellan A, Trouche D. The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc Natl Acad Sci USA 1998;95: 10,493–10,498.

    PubMed  CAS  Google Scholar 

  25. Magnaghi-Jaulin L, Groisman R, Naguibneva I, et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 1998;391: 601–605.

    PubMed  CAS  Google Scholar 

  26. Cai R, Kwon P, Yan-Neale Y, Sambuccetti L, Fischer D, Cohen D. Mammalian histone deacetylase 1 protein is posttranslationally modified by phosphorylation. Biochem Biophys Res Commun 2001;283:445–453

    PubMed  CAS  Google Scholar 

  27. Pflum MK, Tong JK, Lane WS, Schreiber SL. Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. J Biol Chem 2001;276:47,733–47,741.

    PubMed  CAS  Google Scholar 

  28. David G, Neptune MA, DePinho RA. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem 2002;277: 23,658–23,663.

    PubMed  CAS  Google Scholar 

  29. Johnson CA, Turner BM. Histone deacetylases: complex transducers of nuclear signals. Semin Cell Dev Biol 1999;10:179–188.

    PubMed  CAS  Google Scholar 

  30. Juan LJ, Shia WJ, Chen MH, et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J Biol Chem 2000;275: 20,436–20,443.

    PubMed  CAS  Google Scholar 

  31. Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 2000;408:377–381.

    PubMed  CAS  Google Scholar 

  32. Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T. Regulation of E2F1 activity by acetylation. EMBO J 2000; 19:662–671.

    PubMed  CAS  Google Scholar 

  33. Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M. E2F family members are differentially regulated by reversible acetylation. J Biol Chem 2000;275:10,887–10,892.

    PubMed  CAS  Google Scholar 

  34. Yao YL, Yang WM, Seto E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol Cell Biol 2001;21:5979–5991.

    PubMed  CAS  Google Scholar 

  35. Naryzhny SN, Lee H. The post-translational modifications of proliferating cell nuclear antigen: acetylation, not phosphorylation, plays an important role in the regulation of its function. J Biol Chem 2004;279:20,1 94–20,199

    CAS  Google Scholar 

  36. Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD 1. Cell 2004; 119:941–953.

    PubMed  CAS  Google Scholar 

  37. Ahringer J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 2000;16:351–356.

    PubMed  CAS  Google Scholar 

  38. Ng HH, Bird A. Histone deacetylases: silencers for hire. Trends Biochem Sci 2000;25:121-126.

    Google Scholar 

  39. Milutinovic S, Zhuang Q, Szyf M. Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J Biol Chem 2002;277:20,974–20,978.

    PubMed  CAS  Google Scholar 

  40. Luo RX, Postigo AA, Dean DC. Rb interacts with histone deacetylases to repress transcription. Cell 1998;92:463–73.

    PubMed  CAS  Google Scholar 

  41. Stiegler P, De Luca A, Bagella L, Giordano A. The COOH-terminal region of pRb2/p130 binds to histone deacetylase 1 (HDAC1), enhancing transcriptional repression of the E2F-dependent cyclin A promoter. Cancer Res 1998;58: 5049–5052.

    PubMed  CAS  Google Scholar 

  42. Wade PA. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum Mol Genet 2001;10:693–698.

    PubMed  CAS  Google Scholar 

  43. Takaki T, Fukasawa K, Suzuki-Takahashi I, Hirai H. Cdk-mediated phosphorylation of pRB regulates HDAC binding in vitro. Biochem Biophys Res Commun 2004;316:252–255.

    PubMed  CAS  Google Scholar 

  44. Pennaneach V, Barbier V, Regazzoni K, Fotedar R, Fotedar A. Rb inhibits E2F-1-induced cell death in a LXCXE-dependent manner by active repression. J Biol Chem 2004;279:23,376–23,383.

    Google Scholar 

  45. Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE. Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 1997;89:341–347.

    PubMed  CAS  Google Scholar 

  46. Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 1997;89:349–356.

    PubMed  CAS  Google Scholar 

  47. Sommer A, Hilfenhaus S, Menkel A, et al. Cell growth inhibition by the Mad/Max complex through recruitment of histone deacetylase activity. Curr Biol 1997;7:357–365.

    PubMed  CAS  Google Scholar 

  48. Li J, Lin Q, Wang W, Wade P, Wong J. Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev 2002;16:687–692.

    PubMed  CAS  Google Scholar 

  49. Lagger G, Doetzlhofer A, Schuettengruber B, et al. The tumor suppressor p53 and histone deacetylase 1 are antagonistic regulators of the cyclin-dependent kinase inhibitor p21/WAF1/CIP1 gene. Mol Cell Biol 2003;23:2669–2679.

    PubMed  CAS  Google Scholar 

  50. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323–331.

    PubMed  CAS  Google Scholar 

  51. Koutsodontis G, Tentes I, Papakosta P, Moustakas A, Kardassis D. Sp1 plays a critical role in the transcriptional activation of the human cyclin-dependent kinase inhibitor p21(WAF1/Cip1) gene by the p53 tumor suppressor protein. JBiolChem 2001;276:29,116–29,125.

    CAS  Google Scholar 

  52. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A 2004;101:1241–1246.

    PubMed  CAS  Google Scholar 

  53. Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol2003;15:164-171.

    Google Scholar 

  54. Ito A, Kawaguchi Y, Lai CH, et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO 2002;21:6236–6245.

    CAS  Google Scholar 

  55. Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci U S A 2004;101:2259–2264.

    PubMed  CAS  Google Scholar 

  56. Privalsky ML. The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 2004;66:315–360.

    PubMed  CAS  Google Scholar 

  57. Mazumdar A, Wang RA, Mishra SK, et al. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol 2001;3:30–37.

    PubMed  CAS  Google Scholar 

  58. Wei LN, Hu X, Chandra D, Seto E, Farooqui M. Receptor-interacting protein 140 directly recruits histone deacetylases for gene silencing. J Biol Chem 2000;275:40,782–40,787.

    PubMed  CAS  Google Scholar 

  59. Kurtev V, Margueron R, Kroboth K, Ogris E, Cavailles V, Seiser C. Transcriptional regulation by the repressor of estrogen receptor activity via recruitment of histone deacetylases. J Biol Chem 2004;279:24,834–24,843.

    PubMed  CAS  Google Scholar 

  60. Kawai H, Li H, Avraham S, Jiang S, Avraham HK. Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha. Int J Cancer 2003;107:353–358.

    PubMed  CAS  Google Scholar 

  61. Mal A, Sturniolo M, Schiltz RL, Ghosh MK, Harter ML. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J 2001;20:1739–1753.

    PubMed  CAS  Google Scholar 

  62. Puri PL, Iezzi S, Stiegler P, et al. Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis. Mol Cell 2001;8: 885–897.

    PubMed  CAS  Google Scholar 

  63. Mal A, Harter ML. MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proc Natl Acad Sci U S A 2003;100:1735–1739.

    PubMed  CAS  Google Scholar 

  64. Tou L, Liu Q, Shivdasani RA. Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases. Mol Cell Biol 2004;24:3132–3139.

    PubMed  CAS  Google Scholar 

  65. Maga G, Hubscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 2003;116:3051–3060.

    PubMed  CAS  Google Scholar 

  66. Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, Seto E. Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet 2000;26:349–353.

    PubMed  CAS  Google Scholar 

  67. Johnson CA, Padget K, Austin CA, Turner BM. Deacetylase activity associates with topoisomerase II and is necessary for etoposide-induced apoptosis. J Biol Chem 2001;276:4539–542.

    PubMed  CAS  Google Scholar 

  68. Austin CA, Marsh KL. Eukaryotic DNA topoisomerase II beta. Bioessays 1998;20:215–226.

    PubMed  CAS  Google Scholar 

  69. Cai RL, Yan-Neale Y, Cueto MA, Xu H, Cohen D. HDAC1, a histone deacety-lase, forms a complex with Hus1 and Rad9, two G2/M checkpoint Rad proteins. J Biol Chem 2000;275:27,909–27,916

    PubMed  CAS  Google Scholar 

  70. Craig JM, Earle E, Canham P, Wong LH, Anderson M, Choo KH. Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns. Hum Mol Genet 2003;12:3109–3121

    PubMed  CAS  Google Scholar 

  71. Dutertre S, Descamps S, Prigent C. On the role of aurora-A in centrosome function. Oncogene 2002;21:6175–6183.

    PubMed  CAS  Google Scholar 

  72. Sakai H, Urano T, Ookata K, et al. MBD3 and HDAC1, two components of the NuRD complex, are localized at Aurora-A-positive centrosomes in M phase. JBiol Chem 2002;277:48,714–48,723.

    CAS  Google Scholar 

  73. David G, Turner GM, Yao Y, Protopopov A, DePinho RA. mSin3-associated protein, mSds3, is essential for pericentric heterochromatin formation and chromosome segregation in mammalian cells. Genes Dev 2003;17:2396–2405.

    PubMed  CAS  Google Scholar 

  74. Simone C, Stiegler P, Forcales SV, et al. Deacetylase recruitment by the C/H3 domain of the acetyltransferase p300. Oncogene 2004;23:2177–2187.

    PubMed  CAS  Google Scholar 

  75. Vaute O, Nicolas E, Vandel L, Trouche D. Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res 2002;30:475–481.

    PubMed  CAS  Google Scholar 

  76. Otte AP, Kwak TH. Gene repression by Polycomb group protein complexes: a distinct complex for every occasion? Curr Opin Genet Dev 2003;13:448–454.

    PubMed  CAS  Google Scholar 

  77. Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 2004;14:155–164.

    PubMed  CAS  Google Scholar 

  78. Sh YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 2005;19:857–864.

    Google Scholar 

  79. Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005;437:432–435.

    PubMed  CAS  Google Scholar 

  80. Dobosy JR, Selker EU. Emerging connections between DNA methylation and histone acetylation. Cell Mol Life Sci 2001;58:721–727.

    PubMed  CAS  Google Scholar 

  81. Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltrans-ferase Dnmt1 associates with histone deacetylase activity. Nat Genet 2000;24:88–91.

    PubMed  CAS  Google Scholar 

  82. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 2000;25:338–342.

    PubMed  CAS  Google Scholar 

  83. Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 2001;20:2536–2544.

    PubMed  CAS  Google Scholar 

  84. Geiman TM, Sankpal UT, Robertson AK, Zhao Y, Zhao Y, Robertson KD. DNMT3B interacts with hSNF2H chromatin remodeling enzyme, HDACs 1 and 2, and components of the histone methylation system. Biochem Biophys Res Commun 2004;318:544–555.

    PubMed  CAS  Google Scholar 

  85. Deplus R, Brenner C, Burgers WA, et al. Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 2002;30:3831–3838.

    PubMed  CAS  Google Scholar 

  86. Gwack Y, Byun H, Hwang S, Lim C, Choe J. CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi’s sarcoma-associated herpesvirus open reading frame 50. J Virol 2001;75:1909–1917.

    PubMed  CAS  Google Scholar 

  87. Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM. Chromatin remodeling of the Kaposi’s sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol 2003;77:11,425–11,435.

    PubMed  CAS  Google Scholar 

  88. Chiocca S, Kurtev V, Colombo R, et al. Histone deacetylase 1 inactivation by an adenovirus early gene product. Curr Biol 2002;12:594–598.

    PubMed  CAS  Google Scholar 

  89. Zhang Y, Jones C. The bovine herpesvirus 1 immediate-early protein (bICP0) associates with histone deacetylase 1 to activate transcription. J Virol 2001;75:9571–9578

    PubMed  CAS  Google Scholar 

  90. Shestakova E, Bandu MT, Doly J, Bonnefoy E. Inhibition of histone deacetylation induces constitutive derepression of the beta interferon promoter and confers antiviral activity. J Virol 2001;75:3444–3452.

    PubMed  CAS  Google Scholar 

  91. Lehrman G, Hogue IB, Palmer S, et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 2005;366:549–555.

    PubMed  CAS  Google Scholar 

  92. Mannervik M, Levine M. The Rpd3 histone deacetylase is required for segmentation of the Drosophila embryo. Proc Natl Acad Sci U S A1999;96:6797–6801.

    PubMed  CAS  Google Scholar 

  93. Shi Y, Mello C. A CBP/p300 homolog specifies multiple differentiation pathways in Caenorhabditis elegans. Genes Dev 1998;12:943–955.

    PubMed  CAS  Google Scholar 

  94. Dufourcq P, Victor M, Gay F, Calvo D, Hodgkin J, Shi Y. Functional requirement for histone deacetylase 1 in Caenorhabditis elegans gonadogenesis Mol Cell Biol 2002;22:3024–3034.

    PubMed  CAS  Google Scholar 

  95. Golling G, Amsterdam A, Sun Z, et al. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 2002;31:135–140.

    PubMed  CAS  Google Scholar 

  96. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001;1:194–202.

    PubMed  CAS  Google Scholar 

  97. Kelly WK, O’Connor OA, Marks PA. Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Investig Drugs 2002;11:1696–1713.

    Google Scholar 

  98. Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol 2003;3:344–351.

    PubMed  CAS  Google Scholar 

  99. Choi JH, Kwon HJ, Yoon BI, et al. Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res 2001;92:1300–1304.

    PubMed  CAS  Google Scholar 

  100. Patra SK, Patra A, Dahiya R. Histone deacetylase and DNA methyltransferase in human prostate cancer. Biochem Biophys Res Commun 2001;287:705–713.

    PubMed  CAS  Google Scholar 

  101. Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 2004;59:177–189.

    PubMed  CAS  Google Scholar 

  102. Kim JH, Choi YK, Kwon HJ, Yang HK, Choi JH, Kim DY. Downregulation of gelsolin and retinoic acid receptor beta expression in gastric cancer tissues through histone deacetylase 1. J Gastroenterol Hepatol 2004;19:218–224.

    PubMed  CAS  Google Scholar 

  103. Glaser KB, Li J, Staver MJ, Wei RQ, Albert DH, Davidsen SK. Role of class I and class II histone deacetylases in carcinoma cells using siRNA. Biochem Biophys Res Commun 2003;310:529–536.

    PubMed  CAS  Google Scholar 

  104. Zhou Q, Melkoumian ZK, Lucktong A, Moniwa M, Davie JR, Strobl JS. Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1. J Biol Chem 2000;275:35,256–35,263.

    PubMed  CAS  Google Scholar 

  105. Fanciulli M, Bruno T, Di Padova M, et al. Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb. FASEB J 2000;14:904–912.

    PubMed  CAS  Google Scholar 

  106. Bruno T, De Angelis R, De Nicola F, et al. Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb. Cancer Cell 2002;2:387–399.

    Google Scholar 

  107. Di Padova M, Bruno T, De Nicola F, et al. Che-1 arrests human colon carcinoma cell proliferation by displacing HDAC1 from the p21WAF1/CIP1 promoter. J Biol Chem 2003;278:36,496–36,504.

    PubMed  Google Scholar 

  108. Kim MS, Kwon HJ, Lee YM, et al. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 2001;7:437–443.

    PubMed  Google Scholar 

  109. Nusinzon I, Horvath CM. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci U S A2003;100:14,742–14,747.

    PubMed  CAS  Google Scholar 

  110. Klampfer L, Huang J, Swaby LA, Augenlicht L. Requirement of histone deacty-lase activity for signaling by STAT1. J Biol Chem 2004;279:30,358–30,368.

    PubMed  CAS  Google Scholar 

  111. Hu E, Dul E, Sung CM, et al. Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 2003;307:720–728.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Meunier, D., Seiser, C. (2006). Histone Deacetylase 1. In: Verdin, E. (eds) Histone Deacetylases. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59745-024-3:3

Download citation

Publish with us

Policies and ethics