Skip to main content

Using Magnetic Resonance Imaging to Select and Manage Patients for Treatment

  • Chapter
Thrombolytic Therapy for Acute Stroke

Abstract

Thrombolysis is the treatment of choice for eligible acute stroke within 3 h after symptom onset. However, in the United States, only 2–5% of acute stroke patients receive this therapy, and among those patients who are treated there remains a risk of developing a symptomatic intracerebral hemorrhage (ICH) (13). Moreover, no treatment beyond 3 h has been approved by regulatory agencies. Thus, there is an urgent need to optimize safety and efficacy of thrombolytic therapy in the early time window (<3 h from onset), and identify selection criteria for therapies that can be safely extended into later time windows. Multimodal neuroimaging techniques are now available in the clinical setting and may provide an opportunity to meet both these needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NINDS rt-PA Stroke Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:1581–1587

    Article  Google Scholar 

  2. Reed SD, Cramer SC, Blough DK, Meyer K, Jarvik JG. Treatment with tissue plasminogen activator and inpatient mortality rates for patients with ischemic stroke treated in community hospitals. Stroke 2001;32:1832–1840

    PubMed  CAS  Google Scholar 

  3. Johnston SC, Fung LH, Gillum LA, et al. Utilization of intravenous tissue-type plasminogen activator for ischemic stroke at academic medical centers: the influence of ethnicity. Stroke 2001;32:1061–1068

    Article  PubMed  CAS  Google Scholar 

  4. Powers WJ, Zivin J. Magnetic resonance imaging in acute stroke: not ready for prime time [editorial; comment]. Neurology 1998;50:842–843

    PubMed  CAS  Google Scholar 

  5. Liebeskind DS, Yang CK, Sayre J, Bakshi R. Neuroimaging of cerebral ischemia in clinical practice (abstract). Stroke 2003;34:255.

    Article  Google Scholar 

  6. Ruland S, Gorelick PB, Schneck M, Kim D, Moore CG, Leurgans S. Acute stroke care in Illinois: a statewide assessment of diagnostic and treatment capabilities. Stroke 2002;33:1334–1339

    Article  PubMed  Google Scholar 

  7. Schellinger PD, Jansen O, Fiebach JB, et al. Feasibility and practicality of MR imaging of stroke in the management of hyperacute cerebral ischemia. AJNR 2000;21:1184–1189

    PubMed  CAS  Google Scholar 

  8. Sunshine JL, Tarr RW, Lanzieri CF, Landis DM, Selman WR, Lewin JS. Hyperacute stroke: ultrafast MR imaging to triage patients prior to therapy. Radiology 1999;212:325–332

    PubMed  CAS  Google Scholar 

  9. Schellinger PD, Jansen O, Fiebach JB, et al. Monitoring intravenous recombinant tissue plasminogen activator thrombolysis for acute ischemic stroke with diffusion and perfusion MRI. Stroke 2000;31:1318–1328

    PubMed  CAS  Google Scholar 

  10. Mohr JP, Biller J, Hilal SK, et al. Magnetic resonance versus computed tomographic imaging in acute stroke. Stroke 1995;26:807–812

    PubMed  CAS  Google Scholar 

  11. Moseley ME, Cohen Y, Mintorovitch J, et al. Early detection of regional cerebral ischemia in cats: comparison of diffusion-and T2-weighted MRI and spectroscopy. Magn Reson Med 1990;14:330–346

    Article  PubMed  CAS  Google Scholar 

  12. Latour LL, Warach S. Cerebral spinal fluid contamination of the measurement of the apparent diffusion coefficient of water in acute stroke. Magn Reson Med 2002;48:478–486

    Article  PubMed  Google Scholar 

  13. Kuelkens S, Schwark C, Schellinger PD, Fiebach JB, Ringleb PA, Hacke W. Systemic thombolysis in ischemic stroke 3 to 6 hours after onset of symptoms using a MR-based algorithm. Stroke 2003;34:247A.

    Article  Google Scholar 

  14. Fiebach JB, Schellinger PD, Jansen O, et al. CT and diffusion-weighted MR imaging in randomized order: diffusion-weighted imaging results in higher accuracy and lower interrater variability in the diagnosis of hyperacute ischemic stroke. Stroke 2002;33:2206–2210

    Article  PubMed  CAS  Google Scholar 

  15. Berger C, Fiorelli M, Steiner T, et al. Hemorrhagic transformation of ischemic brain tissue: asymptomatic or symptomatic? Stroke 2001;32:1330–1335.

    PubMed  CAS  Google Scholar 

  16. Saur D, Kucinski T, Grzyska U, et al. Sensitivity and interrater agreement of CT and diffusion-weighted MR imaging in hyperacute stroke. AJNR Am J Neuroradiol 2003;24:878–885

    PubMed  Google Scholar 

  17. Chalela JA, Latour LL, Jeffries N, Warach S. Hemorrhage and Early MRI Evaluation from Emergency Room (HEME-ER): a prospective, single center comparison of MRI to CT for the emergency diagnosis of intracranial hemorrhage in patients with suspected acute cerebrovascular disease. Stroke 2003;34:239–240

    Article  Google Scholar 

  18. L^vblad KO, Laubach HJ, Baird AE, et al. Clinical experience with diffusion-weighted MR in patients with acute stroke. AJNR 1998;19:1061–1066

    Google Scholar 

  19. Barber PA, Darby DG, Desmond PM, et al. Prediction of stroke outcome with echoplanar perfusion-and diffusion-weighted MRI. Neurology 1998;51:418–426

    PubMed  CAS  Google Scholar 

  20. Warach S, Pettigrew LC, Dashe JF, et al. Effect of citicoline on ischemic lesions as measured by diffusion-weighted magnetic resonance imaging. Citicoline 010 investigators. Ann Neurol 2000;48:713–722.

    Article  PubMed  CAS  Google Scholar 

  21. Kidwell CS, Alger JR, Di Salle F, et al. Diffusion MRI in patients with transient ischemic attacks. Stroke 1999;30:1174–1180

    PubMed  CAS  Google Scholar 

  22. Engelter ST, Provenzale JM, Petrella JR, Alberts MJ. Diffusion MR imaging and transient ischemic attacks [letter; comment]. Stroke 1999;30:2762–2763

    PubMed  CAS  Google Scholar 

  23. Ay H, Oliveira-Filho J, Buonanno FS, et al. “Footprints” of transient ischemic attacks: a diffusion-weighted MRI study. Cerebrovasc Dis 2002;14:177–186

    Article  PubMed  Google Scholar 

  24. Takayama H, Mihara B, Kobayashi M, Hozumi A, Sadanaga H, Gomi S. [usefulness of diffusion-weighted MRI in the diagnosis of transient ischemic attacks]. No To Shinkei 2000;52:919–923.

    PubMed  CAS  Google Scholar 

  25. Bisschops RHC, Kappelle LJ, Mali W, van der Grond J. Hemodynamic and metabolic changes in transient ischemic attack patients. Stroke 2001;33:110–115.

    Article  Google Scholar 

  26. Rovira A, Rovira-Gols A, Pedraza S, Grive E, Molina C, Alvarez-Sabin J. Diffusion-weighted MR imaging in the acute phase of transient ischemic attacks. AJNR 2002;23:77–83.

    PubMed  Google Scholar 

  27. Kamal AK, Segal AZ, Ulug AM. Quantitative diffusion-weighted MR imaging in transient ischemic attacks. AJNR 2002;23:1533–1538.

    PubMed  Google Scholar 

  28. Warach S, Kidwell CS. The redefinition of TIA: the uses and limitations of dwi in acute ischemic cerebrovascular syndromes. Neurology 2004;62:359–360.

    PubMed  Google Scholar 

  29. Kidwell CS, Warach S. Acute ischemic cerebrovascular syndrome: diagnostic criteria. Stroke 2003;34:2995–2998.

    Article  PubMed  Google Scholar 

  30. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magc Res Med 1990;14:249–265.

    Article  CAS  Google Scholar 

  31. Baird AE, Lovblad KO, Dashe JF, et al. Clinical correlations of diffusion and perfusion lesion volumes in acute ischemic stroke. Cerebrovasc Dis 2000;10:441–448.

    Article  PubMed  CAS  Google Scholar 

  32. Schellinger PD, Fiebach JB, Jansen O, et al. Stroke magnetic resonance imaging within 6 hours after onset of hyperacute cerebral ischemia. Ann Neurol 2001;49:460–469.

    Article  PubMed  CAS  Google Scholar 

  33. Broderick JP, Adams HP, Jr., Barsan W, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 1999;30:905–915.

    PubMed  CAS  Google Scholar 

  34. Adams HP, Jr., Adams RJ, Brott T, et al. Guidelines for the early management of patients with ischemic stroke: a scientific statement from the Stroke Council of the American Stroke Association. Stroke 2003;34:1056–1083.

    Article  PubMed  Google Scholar 

  35. Atlas SW, Thulborn KR. MR detection of hyperacute parenchymal hemorrhage of the brain. AJNR 1998;19:1471–1477.

    PubMed  CAS  Google Scholar 

  36. Fiebach JB, Schellinger PD, Gass A, et al. Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 2004;35:502–506.

    Article  PubMed  Google Scholar 

  37. Kidwell CS, Chalela JA, Saver JL, Davis S, Starkman S, Warach S. Hemorrhage Early MRI Evaluation (HEME) study: preliminary results of a multicenter trial of neuroimaging in patients with acute stroke symptoms within 6 hours of onset (abstract). Stroke 2003;34:239.

    Article  Google Scholar 

  38. Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, Hartung HP. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. 1999;20:637–642.

    CAS  Google Scholar 

  39. Fan YH, Zhang L, Lam WW, Mok VC, Wong KS. Cerebral microbleeds as a risk factor for subsequent intracerebral hemorrhages among patients with acute ischemic stroke. Stroke 2003;34:2459–2462.

    Article  PubMed  Google Scholar 

  40. Kidwell CS, Saver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis: an emerging application. Stroke 2002;33:95–98.

    Article  PubMed  Google Scholar 

  41. Chalela JA, Kang DW, Warach S. Cerebral microbleeds: MRI marker of a diffuse hemorrhage prone state. J Neuroimaging 2004;14:454–457.

    Article  Google Scholar 

  42. Wiesmann M, Mayer TE, Yousry I, Medele R, Hamann GF, Bruckmann H. Detection of hyperacute subarachnoid hemorrhage of the brain by using magnetic resonance imaging. J Neurosurg 2002;96:684–689.

    Article  PubMed  Google Scholar 

  43. Singer MB, Atlas SW, Drayer BP. Subarachnoid space disease: diagnosis with fluid-attenuated inversion-recovery MR imaging and comparison with gadolinium-enhanced spin-echo MR imaging—blinded reader study. Radiology. 1998;208:417–422.

    PubMed  CAS  Google Scholar 

  44. Mitchell P, Wilkinson ID, Hoggard N, et al. Detection of subarachnoid haemorrhage with magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2001;70:205–211.

    Article  PubMed  CAS  Google Scholar 

  45. Astrup J, Siesjo BK, Symon L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 1981;12:723–725.

    PubMed  CAS  Google Scholar 

  46. Warach S. Tissue viability thresholds in acute stroke: the 4-factor model. Stroke 2001;32:2460–2461.

    PubMed  CAS  Google Scholar 

  47. Fisher M, Prichard JW, Warach S. New magnetic resonance techniques for acute ischemic stroke. JAMA 1995;274:908–911.

    Article  PubMed  CAS  Google Scholar 

  48. Schellinger PD. MRI-guided therapy in acute stroke. Expert Rev Cardiovasc Ther 2003;1:569–580.

    Article  PubMed  Google Scholar 

  49. Baird AE, Benfield A, Schlaug G, et al. Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann Neurol 1997;41:581–589.

    Article  PubMed  CAS  Google Scholar 

  50. Warach S, Dashe JF, Edelman RR. Clinical outcome in ischemic stroke predicted by early diffusion-weighted and perfusion magnetic resonance imaging: a preliminary analysis. J Cereb Blood Flow Metab 1996;16:53–59.

    Article  PubMed  CAS  Google Scholar 

  51. Warach S, Gaa J, Siewert B, Wielopolski P, Edelman RR. Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging. Ann Neurol 1995;37:231–241.

    Article  PubMed  CAS  Google Scholar 

  52. Jansen O, Schellinger P, Fiebach J, Hacke W, Sartor K. Early recanalisation in acute ischaemic stroke saves tissue at risk defined by MRI [letter]. Lancet 1999;353:2036–2037.

    Article  PubMed  CAS  Google Scholar 

  53. Parsons MW, Barber PA, Chalk J, et al. Diffusion-and perfusion-weighted MRI response to thrombolysis in stroke. Ann Neurol 2002;51:28–37.

    Article  PubMed  Google Scholar 

  54. Warach S, Investigators FTD. Early reperfusion related to clinical response in dias. International Stroke Conference, San Diego, CA. 2004.

    Google Scholar 

  55. Kidwell CS, Saver JL, Mattiello et al. Thrombolytic reversal of acute human cerebral ischemic injury shown by diffusion/perfusion magnetic resonance imaging. Ann Neurol 2000;47:462–469.

    Article  PubMed  CAS  Google Scholar 

  56. Kidwell CS, Alger JR, Saver JL. Beyond mismatch: evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke 2003;34:2729–2735.

    Article  PubMed  Google Scholar 

  57. Wu O, Koroshetz WJ, Ostergaard L, et al. Predicting tissue outcome in acute human cerebralischemia using combined diffusion-and perfusion-weighted MR imaging. Stroke 2001;32:933–942.

    PubMed  CAS  Google Scholar 

  58. Jacobs MA, Mitsias P, Soltanian-Zadeh H, et al. Multiparametric MRI tissue characterization in clinical stroke with correlation to clinical outcome: part 2. Stroke 2001;32:950–957.

    PubMed  CAS  Google Scholar 

  59. Tong DC, Adami A, Moseley ME, Marks MP. Relationship between apparent diffusion coefficient and subsequent hemorrhagic transformation following acute ischemic stroke. Stroke 2000;31:2378–2384.

    PubMed  CAS  Google Scholar 

  60. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 2004;56(4):468–477.

    Article  PubMed  Google Scholar 

  61. Chalela JA, Kang DW, Luby M, et al. Early magnetic resonance imaging findings in patients receiving tissue plasminogen activator predict outcome: insights into the pathophysiology of acute stroke in the thrombolysis era. Ann Neurol 2004;55:105–112.

    Article  PubMed  Google Scholar 

  62. Warach S. Use of diffusion and perfusion magnetic resonance imaging as a tool in acute stroke clinical trials. Curr Control Trials Cardiovasc Med 2001;2:38–44.

    Article  PubMed  Google Scholar 

  63. Schramm P, Schellinger PD, Klotz E, et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke 2004;35:1652–1658.

    Article  PubMed  Google Scholar 

  64. Lev MH, Segal AZ, Farkas J, et al. Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis: prediction of final infarct volume and clinical outcome. Stroke 2001;32:2021–2028.

    Article  PubMed  CAS  Google Scholar 

  65. Wintermark M, Reichhart M, Thiran JP, et al. Prognostic accuracy of cerebral blood flow measurement by perfusion computed tomography, at the time of emergency room admission, in acute stroke patients. Ann Neurol 2002;51:417–432.

    Article  PubMed  Google Scholar 

  66. Koenig M, Kraus M, Theek C, Klotz E, Gehlen W, Heuser L. Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke 2001;32:431–437.

    PubMed  CAS  Google Scholar 

  67. Marler JR, Tilley BC, Lu M, et al. Early stroke treatment associated with better outcome: the NINDS rt-PA Stroke Study. Neurology 2000;55:1649–1655.

    PubMed  CAS  Google Scholar 

  68. Hacke W, Donnan G, Fieschi C, et al. Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA Stroke trials. Lancet 2004;363:768–774.

    Article  PubMed  Google Scholar 

  69. Darby DG, Barber PA, Gerraty RP, et al. Pathophysiological topography of acute ischemia by combined diffusion-weighted and perfusion MRI. Stroke 1999;30:2043–2052.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Schellinger, P.D., Kidwell, C.S., Warach, S. (2005). Using Magnetic Resonance Imaging to Select and Manage Patients for Treatment. In: Lyden, P.D. (eds) Thrombolytic Therapy for Acute Stroke. Current Clinical Neurology. Humana Press. https://doi.org/10.1385/1-59259-933-8:279

Download citation

  • DOI: https://doi.org/10.1385/1-59259-933-8:279

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-398-5

  • Online ISBN: 978-1-59259-933-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics