Skip to main content

Wilms’ Tumor as a Model for Cancer Biology

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 222))

Abstract

Wilms’ tumor of the kidney (WT) is the most common solid tumor of childhood, and it was first described in detail by Max Wilms’ in 1899. WT is a paradigm of childhood cancer, because it has served as a model from four distinct perspectives. First, it was one of three tumors used by Knudson in the early 1970s as a model for understanding the epidemiology of childhood cancer. Second, WT has played a key role is the molecular biology of childhood cancer. WT was one of the first examples in which a tumor suppressor gene was mapped by somatic genetic alterations in the tumors, compared to normal tissues, i.e., somatic cell gene mapping. Third, WT was the tumor in which abnormal imprinting in cancer was discovered. As such, it has been a model for epigenetic alterations in cancer. Finally, WT is a model for understanding the pathology of childhood cancer. Pediatric solid tumors, unlike adult malignancies, typically reflect normal developmental stages of organogenesis. As such, Wilms’ tumor has served as a developmental paradigm for nephrogenesis. The purpose of this chapter is to describe the evolution of WT as a model for cancer from each of these perspectives, and then to synthesize them in a unifying view that hopefully provides novel insights into the mechanism of cancer in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Knudson, A. G. and Strong, L. C. (1972) Mutation and cancer: a model for Wilms„ tumor of the kidney. J. Natl. Cancer Inst. 48, 313–324.

    PubMed  Google Scholar 

  2. Comings, D. E. (1973) A general theory of carcinogenesis. Proc. Natl. Acad. Sci. USA 70, 3324–3328.

    Article  PubMed  CAS  Google Scholar 

  3. Knudson, A. G. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68, 820–823.

    Article  PubMed  Google Scholar 

  4. Knudson, A. G., Jr. and Strong, L. C. (1972) Mutation and cancer: neuroblastoma and pheochromocytoma. Am. J. Hum. Genet. 24, 514–532.

    PubMed  Google Scholar 

  5. Breslow, N. E. and Beckwith, J. B. (1982) Epidemiological features of Wilms„ tumor: results of the National Wilms„ Tumor Study. J Natl. Cancer Inst. 68, 429–436.

    PubMed  CAS  Google Scholar 

  6. Breslow, N., Beckwith, J. B., Ciol, M., and Sharples, K. (1988) Age distribution of Wilms„ tumor: report from the National Wilms„ Tumor Study. Cancer Res. 48, 1653–1657.

    PubMed  CAS  Google Scholar 

  7. Riccardi, V. M., Sujansky, E., Smith, A. C., and Francke, U. (1978) Chromosomal imbalance in the aniridia-Wilms„ tumor association: 11p interstitial deletion. Pediatrics 61, 604–610.

    PubMed  CAS  Google Scholar 

  8. Fearon, E. R., Vogelstein, B., and Feinberg, A. P. (1984) Somatic deletion and duplication of genes on chromosome 11 in Wilms„ tumors. Nature 309, 176–178.

    Article  PubMed  CAS  Google Scholar 

  9. Michalopoulos, E. E., Bevilacqua, P. J., Stokoe, N., Powers, V. E., Willard, H. F., and Lewis, W. H. (1985) Molecular analysis of gene deletion in aniridia-Wilms„ tumor association. Hum. Genet. 70, 157–162.

    Article  PubMed  CAS  Google Scholar 

  10. Haber, D. A., Buckler, A. J., Glaser, T., et al. (1990) An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms„ tumor. Cell 61, 1257–1269.

    Article  PubMed  CAS  Google Scholar 

  11. Gessler, M., Poustka, A., Cavenee, W., Neve, R. L., Orkin, S. H., and Bruns, G. A. (1990) Homozygous deletion in Wilms’ tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778.

    Article  PubMed  CAS  Google Scholar 

  12. DiLella, A. G., Kwok, S. C. M., Ledley, F. D., Marvit, J., and Woo, S. C. (1986) Molecular structure and polymorphic map of the human phenylalanine hydroxylase gene. Biochemistry 25, 743–749.

    Article  PubMed  CAS  Google Scholar 

  13. Kreidberg, J. A., Sariola, H., Loring, J. M., et al. (1993) WT-1 is required for early kidney development. Cell 74, 679–691.

    Article  PubMed  CAS  Google Scholar 

  14. Glaser, T., Lane, J., and Housman, D. (1990) A mouse model of the aniridia-Wilms„ tumor deletion syndrome. Science 250, 823–827.

    Article  PubMed  CAS  Google Scholar 

  15. Moffett, P., Bruening, W., Nakagama, H., et al. (1995) Antagonism of WT1 activity by protein self-association. Proc. Natl. Acad. Sci. USA 92, 11105–11109.

    Article  PubMed  CAS  Google Scholar 

  16. Reddy, J. C., Hosono, S., and Licht, J. D. (1995) The transcriptional effect of WT1 is modulated by choice of expression vector. J. Biol. Chem. 270, 29976–29982.

    Article  PubMed  CAS  Google Scholar 

  17. Pelletier, J., Bruening, W., Kashtan, C. E., et al. (1991) Germline mutations in the Wilms„ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67, 437–447.

    Article  PubMed  CAS  Google Scholar 

  18. Rauscher, F. J., III (1993) The WT1 Wilms’ tumor gene product: a developmentally regulated transcription factor in the kidney that functions as a tumor suppressor. FASEB J. 7, 896–903.

    PubMed  CAS  Google Scholar 

  19. Barbaux, S., Niaudet, P., Gubler, M. C., et al. (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470.

    Article  PubMed  CAS  Google Scholar 

  20. Bruening, W. and Pelletier, J. (1996) A non-AUG translational initiation event generates novel WT1 isoforms. J. Biol. Chem. 271, 8646–8654.

    Article  PubMed  CAS  Google Scholar 

  21. Sakamoto, Y., Yoshida, M., Semba, K., and Hunter, T. (1997) Inhibition of the DNA-binding and transcriptional repression activity of the Wilms„ tumor gene product, WT1, by cAMP-dependent protein kinase-mediated phosphorylation of Ser-365 and Ser-393 in the zinc finger domain. Oncogene 15, 2001–2012.

    Article  PubMed  CAS  Google Scholar 

  22. Ye, Y., Raychaudhuri, B., Gurney, A., Campbell, C. E., and Williams, B. R. (1996) Regulation of WT1 by phosphorylation: inhibition of DNA binding, alteration of transcriptional activity and cellular translocation. EMBO J. 15, 5606–5615.

    PubMed  CAS  Google Scholar 

  23. Hammes, A., Guo, J. K., Lutsch, G., et al. (2001) Two splice variants of the Wilms„ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106, 319–329.

    Article  PubMed  CAS  Google Scholar 

  24. Hastie, N. D. (2001) Life, sex, and WT1 isoforms—three amino acids can make all the difference. Cell 106, 391–394.

    Article  PubMed  CAS  Google Scholar 

  25. Reeve, A. E., Sih, S. A., Raizis, A. M., and Feinberg, A. P. (1989) Loss of allelic heterozygosity at a second locus on chromosome 11 in sporadic Wilms„ tumor cells. Mol. Cell. Biol. 9, 1799–1803.

    PubMed  CAS  Google Scholar 

  26. Rainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., and Feinberg, A. P. (1993) Relaxation of imprinted genes in human cancer. Nature 362, 747–749.

    Article  PubMed  CAS  Google Scholar 

  27. Schroeder, W. T., Chao, L. Y., Dao, D. D., et al. (1987) Nonrandom loss of maternal chromosome 11 alleles in Wilms’ tumors. Am. J. Hum. Genet. 40, 413–420.

    PubMed  CAS  Google Scholar 

  28. Scrable, H., Cavenee, W., Ghavimi, F., Lovell, M., Morgan, K., and Sapienza, C. (1989) A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc. Natl. Acad. Sci. USA 86, 7480–7484.

    Article  PubMed  CAS  Google Scholar 

  29. Sapienza, C. (1990) Parental imprinting of genes. Sci. Am. 263, 52–60.

    Article  PubMed  CAS  Google Scholar 

  30. Ogawa, O., Eccles, M. R., Szeto, J., et al. (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms„ tumour. Nature 362, 749–751.

    Article  PubMed  CAS  Google Scholar 

  31. Rainier, S., Dobry, C. J., and Feinberg, A. P. (1995) Loss of imprinting in hepatoblastoma. Cancer Res. 55, 1836–1838.

    PubMed  CAS  Google Scholar 

  32. Zhan, S., Shapiro, D. N., and Helman, L. J. (1994) Activation of an imprinted allele of the insulinlike growth factor II gene implicated in rhabdomyosarcoma. J Clin. Invest. 94, 445–448.

    Article  PubMed  CAS  Google Scholar 

  33. Vu, T. H., Yballe, C., Boonyanit, S., and Hoffman, A. R. (1995) Insulin-like growth factor II in uterine smooth-muscle tumors: maintenance of genomic imprinting in leiomyomata and loss of imprinting in leiomyosarcomata. J. Clin. Endocrinol. Metab. 80, 1670–1676.

    Article  PubMed  CAS  Google Scholar 

  34. Hibi, K., Nakamura, H., Hirai, A., et al. (1996) Loss of H19 imprinting in esophageal cancer. Cancer Res. 56, 480–482.

    PubMed  CAS  Google Scholar 

  35. Hashomoto, K., Azuma, C., Koyama, M., et al. (1995) Loss of imprinting in choriocarcinoma. Nat. Genet. 9, 109–110.

    Article  Google Scholar 

  36. Jarrard, D. F., Bussemakers, M. J., Bova, G. S., and Isaacs, W. B. (1995) Regional loss of imprinting of the insulin-like growth factor II gene occurs in human prostate tissues. Clin. Cancer Res. 1, 1471–1478.

    PubMed  CAS  Google Scholar 

  37. Yee, D., Cullen, K. J., Paik, S., et al. (1998) Insulin-like growth factor II mRNA expression in human breast cancer. Cancer Res. 48, 6691–6696.

    Google Scholar 

  38. El-Badry, O. M., Helman, L. J., Chatten, J., Steinberg, S. M., Evans, A. E., and Israel, M. A. (1991) Insulin-like growth factor II-mediated proliferation of human neuroblastoma. J. Clin. Invest. 87, 648–657.

    Article  PubMed  CAS  Google Scholar 

  39. Lahm, H., Amstad, P., Wyniger, J., et al. (1994) Blockade of the insulin-like growth-factor-I receptor inhibits growth of human colorectal cancer cells: evidence of a functional IGF-II-mediated autocrine loop. Int. J. Cancer 58, 452–459.

    Article  PubMed  CAS  Google Scholar 

  40. Leventhal, P. S., Randolph, A. E., Vesbit, T. E., Schenone, A., Windebank, A., and Feldman, E. L. (1995) Insulin-like growth factor-II as a paracrine growth factor in human neuroblastoma cells. Exp. Cell Res. 221, 179–186.

    Article  PubMed  CAS  Google Scholar 

  41. Ravenel, J. D., Broman, K. W., Perlman, E. J., et al. (2001) Loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of Wilms’ tumor. J. Natl. Cancer Inst. 93, 1698–1703.

    Article  PubMed  CAS  Google Scholar 

  42. Hedborg, F., Holmgren, L., Sandstedt, B., and Ohlsson, R. (1994) The cell type-specific IGF2 expression during early human development correlates to the pattern of overgrowth and neoplasia in the Beckwith-Wiedemann syndrome. Am. J. Pathol. 145, 802–817.

    PubMed  CAS  Google Scholar 

  43. Christofori, G., Naik, P., and Hanahan, D. (1994) A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369, 414–418.

    Article  PubMed  CAS  Google Scholar 

  44. Christofori, G., Naik, P., and Hanahan, D. (1995) Deregulation of both imprinted and expressed alleles of the insulin-like growth factor 2 gene during b-cell tumorigenesis. Nat. Genet. 10, 196–201.

    Article  PubMed  CAS  Google Scholar 

  45. Weksberg, R., Shen, D. R., Fei, Y. L., Song, Q. L., and Squire, J. (1993) Disruption of insulinlike growth factor 2 imprinting in Beckwith-Weidemann syndrome. Nat. Genet. 5, 143–150.

    Article  PubMed  CAS  Google Scholar 

  46. Steenman, M. J. C., Rainier, S., Dobry, C. J., Grundy, P., Horon, I. L., and Feinberg, A. P. (1994) Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms„ tumor. Nat. Genet. 7, 433–439.

    Article  PubMed  CAS  Google Scholar 

  47. Lee, M. P., DeBaun, M. R., Mitsuya, K., et al. (1999) Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl. Acad. Sci. USA 96, 5203–5208.

    Article  PubMed  CAS  Google Scholar 

  48. Lee, M. P., DeBaun, M., Randhawa, G. S., Reichard, B. A., and Feinberg, A. P. (1997) Low frequency of p57KIP2 mutation in Beckwith-Wiedemann syndrome. Am. J. Hum. Genet. 61, 304–309.

    Article  PubMed  CAS  Google Scholar 

  49. DeBaun, MR, Niemitz, EL, McNeil, ED, Brandenburg, SA, Lee, MP, and Feinberg, AP. (2002) Epigenetic alterations of H19 and LIT1 distinguish Beckwith-Wiedemann syndrome patients with cancer and birth defects. Am. J. Hum. Genet. 70, 604–611.

    Article  PubMed  CAS  Google Scholar 

  50. Cui, H., Niemitz, E. L., Ravenel, J. D., et al. (2001) Loss of imprinting of insulin-like growth factor-II in Wilms’ tumor commonly involves altered methylation but not mutations of CTCF or its binding site. Cancer Res. 61, 4947–4950.

    PubMed  CAS  Google Scholar 

  51. Feinberg, A. P. and Vogelstein, B. (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92.

    Article  PubMed  CAS  Google Scholar 

  52. Cui, H., Horon, I. L., Ohlsson, R., Hamilton, S. R., and Feinberg, A. P. (1998) Loss of Imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nat. Med. 4, 1276–1280.

    Article  PubMed  CAS  Google Scholar 

  53. Beckwith, J. B., Kiviat, N. B., and Bonadio, J. F. (1990) Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms„ tumor. Pediatr. Pathol. 10, 1–36.

    Article  PubMed  CAS  Google Scholar 

  54. Huang, A., Campbell, C. E., Bonetta, L., et al. (1990) Tissue, developmental, and tumorspecific expression of divergent transcripts in Wilms’ tumor. Science 250, 991–994.

    Article  PubMed  CAS  Google Scholar 

  55. Fearon, E. R. and Vogelstein, B. (1990) A genetic model for colorectal turmorigenesis. Cell 61, 759–767.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Feinberg, A.P., Williams, B.R.G. (2003). Wilms’ Tumor as a Model for Cancer Biology. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 222. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-328-3:239

Download citation

  • DOI: https://doi.org/10.1385/1-59259-328-3:239

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-986-5

  • Online ISBN: 978-1-59259-328-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics