Skip to main content
Log in

Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Vertical distribution of the main bacteria isolated from the Muztagata ice core (about 22.4 m) was investigated by means of cultivation and 16S rRNA sequence analysis. The results showed that the amount of culturable bacteria fluctuated with ice core depth, and was more in dirty layer than in clean ice, which suggested the close corresponding relationship between high input of the bacteria deposited by wind and snowflow and dirty layer. Most of the bacteria were psychrophiles and psychrotolerants, including α- and γ-proteobacteria, Cryobacterium psychrophilum, CFB (Cytophaga-Flavobacterium-Bacteroides) group, high-G+C gram-positive bacteria (HGC). Acinetobacter sp. and HGC repeatly occurred in different ice depths, and their quantitative distribution was consistent with the change of the total amount of culturable bacteria with depth, which suggested the main bio-indicator; while Flavobacterium, Cryobacterium psychrophilum, and α-proteobacteria, also functioned as a secondary indicator of climatic and environmental changes. This study is the first report concerning continuous quantitative variation and pattern of the main culturable bacteria in ice core section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burkins, M. B., Virginia, R. A., Chamberlain, C. P. et al., Origin and distribution of soil organic matter in Taylor Valley, Antarc., Ecol., 2000, 81: 2377–2391.

    Article  Google Scholar 

  2. Ma, L. J., Catharine, M. C., Starmer, W. T. et al., Revival and characterization of fungi from ancient polar ice, Mycologist, 1999, 13: 70–73.

    Article  Google Scholar 

  3. Cameron, R. E., Morelli, F. A., Johnson, R. M., Bacterial species in soil and air of the Antarctic Continent, Antarc. J. U.S., 1972, 7: 187–189.

    Google Scholar 

  4. Rogers, S. O., Ma, L., Castello, J. D. et al., Dilemmas and enigmas encased in ancient ice, XVI Internatioal Botanical Congr. Abs., 1999, 452.

    Google Scholar 

  5. Castello, J. D., Rogers, S. O., Starmer, W. T. et al., Detection of tomato mosaic tobamovirus RNA in ancient glacial ice, Polar Biol., 1999, 22: 207–212. [DOI]

    Article  Google Scholar 

  6. Banttari, E. E., Venette, J. R., Aerosol spread of plant viruses: Potential role in disease outbreaks, Ann. New York Acad. Sci., 1980, 353: 167–173.

    Article  Google Scholar 

  7. Abyzov, S. S., Microorganisms in the Antarctic ice (ed. Friedman, E. I.), Antarctic Microbiology, New York: Wiley-Liss, 1993, 265–295.

    Google Scholar 

  8. Abyzov, S. S., Mitskevich, I. N, Poglazova, M. N., Microflora of the deep glacier horizons of central Antarctica, Microbiol. (Moscow), 1998, 67: 66–73.

    Google Scholar 

  9. Yoshimura, Y., Kohshima, S., Takeuchi, N., Himalayan ice-core dating with snow algae, J. Glaciol., 2000, 46(153): 335–340.

    Article  Google Scholar 

  10. Yao, T. D., Xiang, S. R., Zhang, X. J. et al., Microbiological characeteristics recorded by Manlan and Puruogangri ice core, Quatern. Sci., 2003, 23: 193–199.

    Google Scholar 

  11. Priscu, J. C., Adams, E. E., Lyons, W. B. et al., Geomicrobiology of subglacial ice above Lake Vostok, Antarc. Sci., 1999, 286: 2141–2144.

    Google Scholar 

  12. Siebert, J., Hirsch, P., Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (southern Victoria Land), Polar Biol., 1988, 9: 37–44. [DOI]

    Article  Google Scholar 

  13. Claus, W. G., Understanding Microbes (ed. Freeman, W.H.), New York: W H Freeman Company, 1989, 51–72.

  14. Altschul, S. F., Gish, W., Miller, W. et al., Basic local alignment search tool, J. Mol. Biol., 1990, 215: 403–410. [DOI]

    Article  Google Scholar 

  15. Kumar, S., Tamura, K., Nei, M., MEGA molecular evolutionary genetics analysis Version 1.01, Pennsylvania State University, 1993.

    Google Scholar 

  16. Miskin, I., Glenn, R., Kirsten, L. et al., Bacteria in post-glacial freshwater sediments, Microbiol., 1998, 144: 2427–2439.

    Article  Google Scholar 

  17. Gilichinsky, D. A., Khlebnikova, G M., Zvyagintsev, D. G et al., The use of microbiological characteristics of rocks in geocryology, Proc. 5th Int Conf. Permafrost, 1988, 1: 749–753.

    Google Scholar 

  18. Gilichinsky, D. A., Vorobyova, E. A., Erokhina, L. G. et al., Long-term preservation of microbial ecosystems in permafrost, Adv. Space Res., 1992, 12: 255–263. [DOI]

    Article  Google Scholar 

  19. Balkwill, D. L., Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina, Geomicrobiol. J., 1989, 7: 33–52.

    Article  Google Scholar 

  20. Shi, T., Reeves, R. H, Gilichinsky, D. A. et al., Characterization of Viable Bacteria from Siberian Permafrost by 16S rDNA Sequencing, Microbial Ecol., 1997, 33: 169–179. [DOI]

    Article  Google Scholar 

  21. Bowman, J. P., McCammon, S. A., Brown, M. V. et al., Diversity and association of psychrophilic bacteria in Antarctic sea ice, Appl. Environ. Microbiol., 1997, 63: 3068–3078.

    Google Scholar 

  22. Helmke, E., Weyland, H., Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter, Mar. Ecol. Prog. Ser., 1995, 117: 269–287.

    Article  Google Scholar 

  23. Christner, B. C., Thompson, E. M., Thompson, L. G. et al., Recovery and identification of viable bateria immured in glacier ice, Icarus, 2000, 144: 479–485. [DOI]

    Article  Google Scholar 

  24. DeLong, E. F., Franks, D. G., Yayanos, A. A., Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria, Appl. Environ. Microbiol., 1997, 63: 2105–2108.

    Google Scholar 

  25. Maruyama, A., Honda, D., Yamamoto, H. et al., Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacicensis sp. nov., Int. J. Syst. Evol. Microbiol., 2000, 50: 835–846.

    Article  Google Scholar 

  26. Christner, B. C., Thompson, E. M., Thompson, L. G. et al., Bacterial recovery from ancient glacial ice, Environ. Microbiol., 2003, 5(5): 433–436. [DOI]

    Article  Google Scholar 

  27. Zhang, X. J., Ma, X. J., Yao, T. D. et al., Diversity of 16S rDNA and environmental factor influencing microorganisms in Malan ice core, Chinese Sci. Bull., 2003, 48(11): 1146–1151.

    Google Scholar 

  28. Gounot, A. M., Efects of temperature on the growth of psychrophilic bacteria from glaciers, Can. J. Microbiol., 1976, 22(6): 839–46.

    Article  Google Scholar 

  29. Xiang, S. R., Yao, T. D., An, L. Z. et al., Bacterial diversity in Malan Ice Core from the Tibetan Plateau, Folia Microbiol., 2004, 49(3): 269–276.

    Article  Google Scholar 

  30. Rutter, M., Nedwell, D. B., Influence of changing temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: competition and survival in non-steady-state temperature environments, Appl. Environ. Microbiol., 1994, 60(6): 1993–2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shurong Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, S., Yao, T., An, L. et al. Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core. Sci. China Ser. D-Earth Sci. 48, 1728–1739 (2005). https://doi.org/10.1360/02yd0210

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02yd0210

Keywords

Navigation