Skip to main content

Advertisement

Log in

A novel composite scaffold for cardiac tissue engineering

  • Articles
  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

One approach to the engineering of functional cardiac tissue for basic studies and potential clinical use involves bioreactor cultivation of dissociated cells on a biomaterial scaffold. Our objective was to develop a scaffold that is (1) highly porous with large intereconnected pores (to facilitate mass transport), (2) hydrophilic (to enhance cell attachment), (3) structurally stable (to withstand the shearing forces during bioreactor cultivation), (4) degradable (to provide ultimate biocompatibility of the tissue graft), and (5) elastic (to enable transmission of contractile forces). The scaffold of choice was made as a composite of poly(Dl-lactide-co-caprolactone), poly(Dl-lactide-co-glycolide) (PLGA), and type I collagen, with open interconnected pores and the average void volume of 80±5%. Neonatal rat heart cells suspended in Matrigel were seeded into the scaffold at a physiologically high density (1.35×108 cells/cm3) and cultivated for 8 d in cartridges perfused with culture medium or in orbitally mixed dishes (25 rpm); collagen sponge (Ultrafoam⋆m) and PLGA sponge served as controls. Construct cellularity, presence of cardiac markers, and contractile properties were markedly improved in composite scaffolds as compared with both controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, C. M.; Gabriele, P. E.; Niederauer, G.; Athanasiou, K. A. Fabrication and characterization of pla-pga orthopedic implants. Tissue Eng. 1:241–252; 1995.

    Article  Google Scholar 

  • Akins, R. E. Can tissue engineering mend broken hearts? Circ. Res. 90:120–122; 2002.

    PubMed  CAS  Google Scholar 

  • Bader, A.; Schilling, T.; Teebken, O. E.; Brandes, G.; Herden, T.; Steinhoff, G.; Haverich, A. Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur. J. Cardiothorac. Surg. 14:279–284; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Bursac, N.; Papadaki, M.; Cohen, R. J.; Schoen, F. J.; Eisenberg, S. R.; Carrier, R.; Vunjak-Novakovic, G.; Freed, L. E. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 277:H433-H444; 1999.

    CAS  Google Scholar 

  • Carrier, R. L.; Papadaki, M.; Rupnick, M.; Schoen, F. J.; Bursac, N.; Langer, R.; Freed, L. E.; Vunjak-Novakovic, G. Cardiac tissue engineering: cell seeding, cultivation parameters and tissue construct characterization. Biotechnol. Bioeng. 64:580–589; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Cima, L. G.; Vacanti, J. P.; Vacanti, C.; Ingber, D.; Mooney, D.; Langer, R. Tissue engineering by cell transplantation using degradable polymer substrates. J. Biomech. Eng. 113:143–151; 1991.

    PubMed  CAS  Google Scholar 

  • Dai, N. T.; Williamson, M. R.; Khammo, N.; Adams, E. F.; Coombes, A. G. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 25:4263–4271; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Dohmen, P. M.; Lembcke A.; Hots, H.; Kivelitz, D.; Konertz, W. F.: Ross operation with a tissue engineered heart valve. Ann. Thorac. Surg. 74:1438–1442; 2002.

    Article  PubMed  Google Scholar 

  • Freed, L. E.; Vunjak-Novakovic, G. Culture of organized cell communities. Adv. Drug Deliv. Rev. 33:15–30; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Freed, L. E.; Vunjak-Novakovic, G.: Tissue engineering bioreactors. In: Lanza, R. P.; Langer, R.; Vacanti, J., ed. Principles of tissue engineering, 2nd ed. San Diego, CA: Academic Press; 2000:143–156.

    Google Scholar 

  • Hua, F. J.; Kim, G. E.; Lee, J. D.; Son, Y. K.; Lee, D. S. Macroporous poly(llactide) scaffold 1. Preparation of macroporous scaffold by liquidliquid phase separation of a PLLA-dioxane-water system. J. Biomed. Mater. Res. 63:161–167; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ishaug-Riley, S. L.; Crane, G. M.; Gurlek, A.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(Dl-lactic-co-glycolic acid) foams implanted into the rat mesentery. J. Biomed. Mater. Res. 36:1–8; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Krupnick, A. S.; Kreisel, D.; Engels, F. H.; Szeto, W. Y.; Plappert, T.; Popmaa, S. H. Flake, A. W.; Rosengard, B. R. A novel small animal model of left ventricular tissue engineering. J. Heart Lung Transplant. 21:233–243; 2002.

    Article  PubMed  Google Scholar 

  • Lee, C. H.; Singla, A.; Lee, Y. Biomedical application of collagen. Int. J. Pharm. 221:1–22; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Leor, J.; Aboulafia-Etzion, S.; Dar, A.; Shapiro, L.; Barbash, I. M.; Battler, A.; Granot, Y.; Cohen, S. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 102:III56-III61; 2000.

    PubMed  CAS  Google Scholar 

  • Orlic, D.; Kajstura, J.; Chimenti, S., et al. Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ozawa, T.; Mickle, D. A.; Weisel, R. D.; Koyama, N.; Ozawa, S.; Li, R. K. Optimal biomaterial for creation of autologous cardiac grafts. Circulation 106:1176–1182; 2002.

    Article  Google Scholar 

  • Papadaki, M.; Bursac, N.; Langer, R.; Merok, J.; Vunjak-Novakovic, G.; Freed, L. E. Tissue engineering of functional cardiac muscle: molecular, structural and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280:H168-H178; 2001.

    PubMed  CAS  Google Scholar 

  • Radisic, M.; Euloth, M.; Yang, L.; Langer, R.; Freed, L. E.; Vunjak-Novakovic, G. High density seeding of myocyte cells for tissue engineering. Biotechnol. Bioeng. 82:403–414; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Radisic, M.; Park, H.; Shing, H.; Consi, T.; Schoen, F. J.; Langer, R.; Freed, L. E.; Vunjak-Novakovic, G. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101:18129–18134, 2004a.

    Article  PubMed  CAS  Google Scholar 

  • Radisic, M.; Yang, L.; Boublik, J.; Cohen, R. J.; Langer, R.; Freed, L. E.; Vunjak-Novakovic, G. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286:H507-H516; 2004b.

    Article  PubMed  CAS  Google Scholar 

  • Radisic, M.; Obradovic, B.; Vunjak-Novakovic, G. Functional tissue engineering of cartilage and myocardium: bioreactor aspects. In: Ma, P. X.; Eliseeff, J., ed. Scaffolding in tissue engineering. Marcel Dekker; pp 491–520, 2005.

  • Shinoka, T.; Breuer, C. K.; Tanel, R. E., et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 60:S513-S516; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Shirota, T.; Yasui, H.; Shimokawa, H.; Matsuda, T. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials 24:2295–2302; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Sodian, R.; Hoerstrup, S. P.; Sperling, J. S.; Daebritz, S. H.; Martin, D. P.; Schoen, F. J.; Vacanti, J. P.; Mayer, J. E. Tissue engineering of heart valves: in vitro experiences. Ann. Thorac. Surg. 70:140–144; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, S. C.; Brewer, P. S.; Moatamed, F.; Schindler, A.; Pitt, C. G. The intracellular degradation of poly(epsilon-caprolactone). J. Biomed. Mater. Res. 19:437–444; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, W. H.; Eschenhagen, T. Cardiac tissue engineering for replacement therapy. Heart Fail. Rev. 8:259–269; 2003.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Vunjak-Novakovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Radisic, M., Lim, J.O. et al. A novel composite scaffold for cardiac tissue engineering. In Vitro Cell.Dev.Biol.-Animal 41, 188–196 (2005). https://doi.org/10.1290/0411071.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0411071.1

Key words

Navigation