Skip to main content

Advertisement

Log in

Detection of Metastatic Lymph Nodes Using 5-Aminolevulinic Acid in Patients with Gastric Cancer

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Precise diagnosis of lymph node metastases is essential to select therapeutic strategy for patients with gastric cancer, and rapid intraoperative diagnosis is useful for performing less invasive surgery. In this study, we focused on a known photosensitizer, 5-aminolevulinic acid (5-ALA), and examined the feasibility of 5-ALA-induced protoporphyrin IX (PpIX) fluorescence to detect metastatic foci in excised lymph nodes of patients with gastric cancer.

Methods

A total of 144 lymph nodes obtained from 14 gastric cancer patients were examined. The patients were administered 5-ALA orally before surgery. Excised lymph nodes were cut in half and observed by fluorescence microscopy. The diagnostic results were compared to those of the routine histopathological examination.

Results

Observed red fluorescence of PpIX was identical to the metastatic focus, with 84 % accuracy. Twelve non-metastatic lymph nodes showed unexpected PpIX accumulation to lymphoid follicles, but these could be discriminated based on their characteristic fluorescence patterns. With incorporation of this morphological consideration, this method demonstrated good diagnostic power with 92.4 % accuracy. On the quantitative analysis using the signal intensity ratio of red to the sum of red, green, and blue (R/(R + G + B) ratio) as an index corresponding to red fluorescence of PpIX, metastatic lymph nodes showed significantly higher value than non-metastatic lymph nodes (p < 0.0001). The area under the curve was calculated as 0.832 throughout Receiver operating characteristic analysis.

Conclusions

Our results demonstrated that 5-ALA-induced fluorescence diagnosis is a simple and safe method and is a potential candidate for a novel rapid intraoperative diagnostic method applicable to clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matsushita M, Hajiro K, Suzaki T, et al. Histopathological assessment of lymph node metastasis in patients with gastric cancer. Hepatogastroenterology. 1995;42(6):861–6.

    PubMed  CAS  Google Scholar 

  2. Kwon SJ, Kim GS. Prognostic significance of lymph node metastasis in advanced carcinoma of the stomach. Br J Surg. 1996;83(11):1600–3.

    Article  PubMed  CAS  Google Scholar 

  3. Kunisaki C, Shimada H, Takahashi M, et al. Prognostic factors in early gastric cancer. Hepatogastroenterology. 2001;48(37):294–8.

    PubMed  CAS  Google Scholar 

  4. Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English ed. Gastric Cancer. 2011;14(2):101–12.

    Article  Google Scholar 

  5. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 7th ed. New York: Wiley; 2009:73–7.

    Google Scholar 

  6. Yun M, Lim JS, Noh SH, et al. Lymph node staging of gastric cancer using (18)F-FDG PET: a comparison study with CT. J Nucl Med. 2005;46(10):1582–8.

    PubMed  Google Scholar 

  7. Kim SK, Kang KW, Lee JS, et al. Assessment of lymph node metastases using 18F-FDG PET in patients with advanced gastric cancer. Eur J Nucl Med Mol Imaging. 2006;33(2):148–55.

    Article  PubMed  Google Scholar 

  8. Mukai K, Ishida Y, Okajima K, Isozaki H, Morimoto T, Nishiyama S. Usefulness of preoperative FDG-PET for detection of gastric cancer. Gastric Cancer. 2006;9(3):192–6.

    Article  PubMed  Google Scholar 

  9. Shimada H, Okazumi S, Koyama M, Murakami K. Japanese Gastric Cancer Association Task Force for Research Promotion: clinical utility of (1)F-fluoro-2-deoxyglucose positron emission tomography in gastric cancer. A systematic review of the literature. Gastric Cancer. 2011;14(1):13–21.

    Article  PubMed  Google Scholar 

  10. Kim EY, Lee WJ, Choi D, et al. The value of PET/CT for preoperative staging of advanced gastric cancer: comparison with contrast-enhanced CT. Eur J Radiol. 2011;79(2):183–8.

    Article  PubMed  Google Scholar 

  11. Kitagawa Y, Kitano S, Kubota T, et al. Minimally invasive surgery for gastric cancer-toward a confluence of two major streams: a review. Gastric Cancer. 2005;8(2):103–10.

    Article  PubMed  Google Scholar 

  12. Koeda K, Nishizuka S, Wakabayashi G. Minimally invasive surgery for gastric cancer: the future standard of care. World J Surg. 2011;35(7):1469–77.

    Article  PubMed  Google Scholar 

  13. Ichikura T, Chochi K, Sugasawa H, et al. Individualized surgery for early gastric cancer guided by sentinel node biopsy. Surgery. 2006;139(4):501–7.

    Article  PubMed  Google Scholar 

  14. Giuliano AE, Kirgan DM, Guenther JM, Morton DL. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg. 1994;220(3):391–401.

    Article  PubMed  CAS  Google Scholar 

  15. Morton DL, Wen DR, Wong JH, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392–9.

    Article  PubMed  CAS  Google Scholar 

  16. Isozaki H, Okajima K, Fujii K. Histological evaluation of lymph node metastasis on serial sectioning in gastric cancer with radical lymphadenectomy. Hepatogastroenterology. 1997;44(16):1133–6.

    PubMed  CAS  Google Scholar 

  17. Kikuchi Y, Tsuchiya A, Ando Y, Yoshida T, Takenosita S. Immunohistochemical detection of lymph node microinvolvement in node-negative gastric cancer. Gastric Cancer. 1999;2(3):173–8.

    Article  PubMed  Google Scholar 

  18. Kriegmair M, Baumgartner R, Knuchel R, Stepp H, Hofstadter F, Hofstetter A. Detection of early bladder cancer by 5-aminolevulinic acid induced porphyrin fluorescence. J Urol. 1996;155(1):105–9.

    Article  PubMed  CAS  Google Scholar 

  19. Baumgartner R, Huber RM, Schulz H, et al. Inhalation of 5-aminolevulinic acid: a new technique for fluorescence detection of early stage lung cancer. J Photochem Photobiol B. 1996;36(2):169–74.

    Article  PubMed  CAS  Google Scholar 

  20. Stummer W, Stocker S, Wagner S, et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998;42(3):518–25.

    Article  PubMed  CAS  Google Scholar 

  21. Mayinger B, Reh H, Hochberger J, Hahn EG. Endoscopic photodynamic diagnosis: oral aminolevulinic acid is a marker of GI cancer and dysplastic lesions. Gastrointest Endosc. 1999;50(2):242–6.

    Article  PubMed  CAS  Google Scholar 

  22. Ishizuka M, Abe F, Sano Y, et al. Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol. 2011;11(3):358–65.

    Article  PubMed  CAS  Google Scholar 

  23. Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol. 1997;65(2):235–51.

    Article  PubMed  CAS  Google Scholar 

  24. Ohgari Y, Nakayasu Y, Kitajima S, et al. Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochem Pharmacol. 2005;71(1–2):42–9.

    Article  PubMed  CAS  Google Scholar 

  25. Leunig A, Rick K, Stepp H, et al. Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the detection of neoplastic lesions in the oral cavity. Am J Surg. 1996;172(6):674–7.

    Article  PubMed  CAS  Google Scholar 

  26. Murayama Y, Harada Y, Imaizumi K, et al. Precise detection of lymph node metastases in mouse rectal cancer by using 5-aminolevulinic acid. Int J Cancer. 2009;125(10):2256–63.

    Article  PubMed  CAS  Google Scholar 

  27. Arigami T, Natsugoe S, Uenosono Y, et al. Evaluation of sentinel node concept in gastric cancer based on lymph node micrometastasis determined by reverse transcription-polymerase chain reaction. Ann Surg. 2006;243(3):341–7.

    Article  PubMed  Google Scholar 

  28. Yaguchi Y, Sugasawa H, Tsujimoto H, et al. One-step nucleic acid amplification (OSNA) for the application of sentinel node concept in gastric cancer. Ann Surg Oncol. 2011;18(8):2289–96.

    Article  PubMed  Google Scholar 

  29. Frei KA, Bonel HM, Frick H, Walt H, Steiner RA. Photodynamic detection of diseased axillary sentinel lymph node after oral application of aminolevulinic acid in patients with breast cancer. Br J Cancer. 2004;90(4):805–9.

    Article  PubMed  CAS  Google Scholar 

  30. Elfsson B, Wallin I, Eksborg S, Rudaeus K, Ros AM, Ehrsson H. Stability of 5-aminolevulinic acid in aqueous solution. Eur J Pharm Sci. 1999;7(2):87–91.

    Article  PubMed  CAS  Google Scholar 

  31. Horecker BL. The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions. J Biol Chem. 1943;148:173–83.

    CAS  Google Scholar 

  32. Gargesha M, Qutaish MQ, Roy D, Steyer GJ, Watanabe M, Wilson DL. Visualization of color anatomy and molecular fluorescence in whole-mouse cryo-imaging. Comput Med Imaging Graph. 2011;35(3):195–205.

    Article  PubMed  Google Scholar 

  33. Frimberger D, Linke R, Meissner H, et al. Fluorescence diagnosis: a novel method to guide radical inguinal lymph node dissection in penile cancer. World J Urol. 2004;22(2):150–4.

    Article  PubMed  CAS  Google Scholar 

  34. Aoki T, Yasuda D, Shimizu Y, et al. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg. 2008;32(8):1763–7.

    Article  PubMed  Google Scholar 

  35. Gotoh K, Yamada T, Ishikawa O, et al. A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J Surg Oncol. 2009;100(1):75–9.

    Article  PubMed  Google Scholar 

  36. Okamoto K, Muguruma N, Kimura T, et al. A novel diagnostic method for evaluation of vascular lesions in the digestive tract using infrared fluorescence endoscopy. Endoscopy. 2005;37(1):52–7.

    Article  PubMed  CAS  Google Scholar 

  37. Cairnduff F, Stringer MR, Hudson EJ, Ash DV, Brown SB. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. Br J Cancer. 1994;69(3):605–8.

    Article  PubMed  CAS  Google Scholar 

  38. Fan KF, Hopper C, Speight PM, Buonaccorsi G, MacRobert AJ, Bown SG. Photodynamic therapy using 5-aminolevulinic acid for premalignant and malignant lesions of the oral cavity. Cancer. 1996;78(7):1374–83.

    Article  PubMed  CAS  Google Scholar 

  39. Biel M. Advances in photodynamic therapy for the treatment of head and neck cancers. Lasers Surg Med. 2006;38(5):349–55.

    Article  PubMed  CAS  Google Scholar 

  40. Loh CS, MacRobert AJ, Bedwell J, Regula J, Krasner N, Bown SG. Oral versus intravenous administration of 5-aminolaevulinic acid for photodynamic therapy. Br J Cancer. 1993;68(1):41–51.

    Article  PubMed  CAS  Google Scholar 

  41. Doring F, Walter J, Will J, et al. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest. 1998;101(12):2761–7.

    Article  PubMed  CAS  Google Scholar 

  42. Bjorkman DJ, Samowitz WS, Brigham EJ, Peterson BJ, Straight RC. Fluorescence localization of early colonic cancer in the rat by hematoporphyrin derivative. Lasers Surg Med. 1991;11(3):263–70.

    Article  PubMed  CAS  Google Scholar 

  43. Jones BB, Jessop LD, Samowitz WS, Bjorkman DJ. Computer-assisted fluorescence identification of colon cancer in rats. Am J Gastroenterol. 1993;88(10):1724–8.

    PubMed  CAS  Google Scholar 

  44. Kirdaite G, Lange N, Busso N, van den Bergh H, Kucera P, So A. Protoporphyrin IX photodynamic therapy for synovitis. Arthritis Rheum. 2002;46(5):1371–8.

    Article  PubMed  CAS  Google Scholar 

  45. Knuechel R, Kutz H, Hofstaedter F, Hofstetter A, Kriegmair M. Photodynamic diagnostics with 5-ALA in bladder cancer: biology of false positive lesions. Urol Res. 1997;25:94.

    Google Scholar 

  46. Messmann H, Knuchel R, Baumler W, Holstege A, Scholmerich J. Endoscopic fluorescence detection of dysplasia in patients with Barrett’s esophagus, ulcerative colitis, or adenomatous polyps after 5-aminolevulinic acid-induced protoporphyrin IX sensitization. Gastrointest Endosc. 1999;49(1):97–101.

    Article  PubMed  CAS  Google Scholar 

  47. Berg K, Anholt H, Bech O, Moan J. The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells. Br J Cancer. 1996;74(5):688–97.

    Article  PubMed  CAS  Google Scholar 

  48. Hryhorenko EA, Rittenhouse-Diakun K, Harvey NS, Morgan J, Stewart CC, Oseroff AR. Characterization of endogenous protoporphyrin IX induced by delta-aminolevulinic acid in resting and activated peripheral blood lymphocytes by four-color flow cytometry. Photochem Photobiol. 1998;67(5):565–72.

    Article  PubMed  CAS  Google Scholar 

  49. Ghossein RA, Rosai J. Polymerase chain reaction in the detection of micrometastases and circulating tumor cells. Cancer. 1996;78(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  50. Natsugoe S, Aikou T, Shimada M, et al. Occult lymph node metastasis in gastric cancer with submucosal invasion. Surg Today. 1994;24(10):870–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Shin-ichi Miyatake of Osaka Medical College for his helpful advice. This work was partly supported by a project of the Japan Science and Technology Agency (JST), Japan.

Conflicts of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuro Takamatsu MD, PhD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koizumi, N., Harada, Y., Murayama, Y. et al. Detection of Metastatic Lymph Nodes Using 5-Aminolevulinic Acid in Patients with Gastric Cancer. Ann Surg Oncol 20, 3541–3548 (2013). https://doi.org/10.1245/s10434-013-3017-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-3017-3

Keywords

Navigation