Skip to main content

Advertisement

Log in

Both GLUT-1 and GLUT-14 are Independent Prognostic Factors in Gastric Adenocarcinoma

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The role of glucose transporter 14 (GLUT-14/SLC2A14) in tumor biology is entirely unknown, and the significance of hypoxia inducible factor 1-alpha (HIF1-α) for gastric adenocarcinoma is controversial. The impact of GLUT-1/SLC2A1 has never been confirmed in a Caucasian cohort.

Methods

Between 1996 and 2007, 124 patients underwent gastrectomy for gastric adenocarcinoma. Tumor sections were incubated with GLUT-1, GLUT-14, and HIF1-α antibodies. Expression was analyzed for correlations with histopathology, marker coexpression, and patient survival by uni- and multivariate analyses.

Results

Expressions of GLUT-1, GLUT-14, and HIF1-α were detectable in 50, 77.4, and 27.1 %, respectively. Expression of GLUT-1 was associated with pT-category (p = 0.019), pN-category (p = 0.019), tubular (WHO, p = 0.008), and intestinal (Lauren classification; p = 0.002) histologic subtypes. Expression of GLUT-14 was correlated with pT category (p = 0.043), whereas HIF1-α did not show any correlation with histopathology or survival. The median survival period was 14 months (95 % confidence interval [CI] 9.2–18.8 months) for GLUT-1-positive patients and 55 months (95 % CI 25.8–84.2; p = 0.01) for GLUT-1-negative patients. An inferior prognosis also was seen for GLUT-14-positive cases compared with GLUT-14-negative cases (p = 0.004). Thus, worst survival was seen with both GLUT-1- and GLUT-14-positive expression followed by single-positive and then double-negative cases (p = 0.004). In multivariate analysis including International Union Against Cancer (UICC) stages, R category, Lauren classification, surgery alone versus neoadjuvant/perioperative chemotherapy, and marker expression as covariates, GLUT-1 (p = 0.011) and GLUT-14 (p = 0.025) kept their prognostic independence.

Conclusions

The study findings suggest that detection of GLUT-1 and GLUT-14 is of high prognostic value. It gives additional information to UICC stages and identifies patients with inferior prognosis. If confirmed in prospective studies, these markers need to be considered for future classification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kwee RM, Kwee TC. Imaging in local staging of gastric cancer: a systematic review. J Clin Oncol. 2007;25:2107–16.

    Article  PubMed  Google Scholar 

  2. Siewert JR, Bottcher K, Stein HJ, Roder JD. Relevant prognostic factors in gastric cancer: ten-year results of the German Gastric Cancer Study. Ann Surg. 1998;228:449–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Kim JP, Kwon OJ, Oh ST, Yang HK. Results of surgery on 6589 gastric cancer patients and immunochemosurgery as the best treatment of advanced gastric cancer. Ann Surg. 1992;216:269–78 (discussion 278–269).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Hansson LE, Sparen P, Nyren O. Survival in stomach cancer is improving: results of a nationwide population-based Swedish study. Ann Surg. 1999;230:162–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Yasui W, Oue N, Aung PP, Matsumura S, Shutoh M, Nakayama H. Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer. 2005;8:86–94.

    Article  PubMed  CAS  Google Scholar 

  6. Alakus H, Holscher AH, Grass G, et al. Extracapsular lymph node spread: a new prognostic factor in gastric cancer. Cancer. 2010;116:309–15.

    Article  PubMed  Google Scholar 

  7. Alakus H, Grass G, Hennecken JK, et al. Clinicopathological significance of MMP-2 and its specific inhibitor TIMP-2 in gastric cancer. Histol Histopathol. 2008;23:917–23.

    PubMed  CAS  Google Scholar 

  8. Berlth F, Bollschweiler E, Drebber U, Hoelscher AH, Moenig S. Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. WJG World J Gastroenterol. 2014;20:5679–84.

    Article  PubMed  Google Scholar 

  9. Barrett MP, Walmsley AR, Gould GW. Structure and function of facilitative sugar transporters. Curr Opin Cell Biol. 1999;11:496–502.

    Article  PubMed  CAS  Google Scholar 

  10. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34:121–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Montel-Hagen A, Kinet S, Manel N, et al. Erythrocyte GLU-1 triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell. 2008;132:1039–48.

    Article  PubMed  CAS  Google Scholar 

  12. Mueckler M. Facilitative glucose transporters. Eur J Biochem. 1994;219:713–25.

    Article  PubMed  CAS  Google Scholar 

  13. Birnbaum MJ, Haspel HC, Rosen OM. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science. 1987;235:1495–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kim WS, Kim YY, Jang SJ, Kimm K, Jung MH. Glucose transporter 1 (GLUT1) expression is associated with intestinal type of gastric carcinoma. J Korean Med Sci. 2000;15:420–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kawamura T, Kusakabe T, Sugino T, et al. Expression of glucose transporter-1 in human gastric carcinoma: association with tumor aggressiveness, metastasis, and patient survival. Cancer. 2001;92:634–41.

    Article  PubMed  CAS  Google Scholar 

  16. Wu X, Freeze HH. GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics. 2002;80:553–7.

    Article  PubMed  CAS  Google Scholar 

  17. The Human Protein Atlas. Retrieved 2 February 2015. http://www.proteinatlas.org/ENSG00000173262-SLC2A14/cancer.

  18. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3:721–32.

    Article  PubMed  CAS  Google Scholar 

  19. Griffiths EA, Pritchard SA, Welch IM, Price PM, West CM. Is the hypoxia-inducible factor pathway important in gastric cancer? Eur J Cancer. 2005;41:2792–805.

    Article  PubMed  CAS  Google Scholar 

  20. Urano N, Fujiwara Y, Doki Y, et al. Overexpression of hypoxia-inducible factor-1 alpha in gastric adenocarcinoma. Gastric Cancer. 2006;9:44–9.

    Article  PubMed  CAS  Google Scholar 

  21. Jung JH, Im S, Jung ES, Kang CS. Clinicopathological implications of the expression of hypoxia-related proteins in gastric cancer. Int J Med Sci. 2013;10:1217–23.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Knight G, Earle CC, Cosby R, et al. Neoadjuvant or adjuvant therapy for resectable gastric cancer: a systematic review and practice guideline for North America. Gastric Cancer. 2013;16:28–40.

    Article  PubMed  CAS  Google Scholar 

  23. A Japanese Gastric Cancer. Japanese classification of gastric carcinoma. 2nd English ed. Gastric Cancer. 1998;1:10–24.

    Article  Google Scholar 

  24. Catalano V, Labianca R, Beretta GD, Gatta G, de Braud F, Van Cutsem E. Critical reviews in oncology/hematology. Gastric Cancer. 2009;71:127–64.

    Google Scholar 

  25. Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, Rodriguez-Enriquez S, Moreno-Sanchez R. HIF-1alpha modulates energy metabolism in cancer cells by inducing overexpression of specific glycolytic isoforms. Mini Rev Med Chem. 2009;9:1084–101.

    Article  PubMed  CAS  Google Scholar 

  26. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yamamoto T, Seino Y, Fukumoto H, et al. Overexpression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun. 1990;170:223–30.

    Article  PubMed  CAS  Google Scholar 

  28. Wang BY, Kalir T, Sabo E, Sherman DE, Cohen C, Burstein DE. Immunohistochemical staining of GLUT1 in benign, hyperplastic, and malignant endometrial epithelia. Cancer. 2000;88:2774–81.

    Article  PubMed  CAS  Google Scholar 

  29. Rudlowski C, Moser M, Becker AJ, et al. GLUT1 mRNA and protein expression in ovarian borderline tumors and cancer. Oncology. 2004;66:404–10.

    Article  PubMed  CAS  Google Scholar 

  30. Rudlowski C, Becker AJ, Schroder W, Rath W, Buttner R, Moser M. GLUT1 messenger RNA and protein induction relates to the malignant transformation of cervical cancer. Am J Clin Pathol. 2003;120:691–8.

    Article  PubMed  CAS  Google Scholar 

  31. Ogawa J, Inoue H, Koide S. Glucose-transporter-type-I-gene amplification correlates with sialyl-Lewis-X synthesis and proliferation in lung cancer. Int J Cancer. 1997;74:189–92.

    Article  PubMed  CAS  Google Scholar 

  32. Nishioka T, Oda Y, Seino Y, et al. Distribution of the glucose transporters in human brain tumors. Cancer Res. 1992;52:3972–9.

    PubMed  CAS  Google Scholar 

  33. Nagase Y, Takata K, Moriyama N, Aso Y, Murakami T, Hirano H. Immunohistochemical localization of glucose transporters in human renal cell carcinoma. J Urol. 1995;153(3 Pt 1):798–801.

    PubMed  CAS  Google Scholar 

  34. Haber RS, Rathan A, Weiser KR, et al. GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer. 1998;83:34–40.

    Article  PubMed  CAS  Google Scholar 

  35. Cantuaria G, Fagotti A, Ferrandina G, et al. GLUT-1 expression in ovarian carcinoma: association with survival and response to chemotherapy. Cancer. 2001;92:1144–50.

    Article  PubMed  CAS  Google Scholar 

  36. Brown RS, Wahl RL. Overexpression of GLUT-1 glucose transporter in human breast cancer: an immunohistochemical study. Cancer. 1993;72:2979–85.

    Article  PubMed  CAS  Google Scholar 

  37. Yamada A, Oguchi K, Fukushima M, Imai Y, Kadoya M. Evaluation of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography in gastric carcinoma: relation to histological subtypes, depth of tumor invasion, and glucose transporter-1 expression. Ann Nucl Med. 2006;20:597–604.

    Article  PubMed  CAS  Google Scholar 

  38. Yip CH, Rhodes A. Estrogen and progesterone receptors in breast cancer. Future Oncol. 2014;10:2293–301.

    Article  PubMed  CAS  Google Scholar 

  39. Abouzeid AH, Patel NR, Rachman IM, Senn S, Torchilin VP. Anti-cancer activity of anti-GLUT1 antibody-targeted polymeric micelles co-loaded with curcumin and doxorubicin. J Drug Target. 2013;21:994–1000.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study did not receive financial or other support from any organizations or other people not listed as authors.

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Alakus MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berlth, F., Mönig, S., Pinther, B. et al. Both GLUT-1 and GLUT-14 are Independent Prognostic Factors in Gastric Adenocarcinoma. Ann Surg Oncol 22 (Suppl 3), 822–831 (2015). https://doi.org/10.1245/s10434-015-4730-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4730-x

Keywords

Navigation