Skip to main content

Advertisement

Log in

Protecting the Normal Physiological Functions of Articular and Periarticular Structures by Aurum Nanoparticle-Based Formulations: an Up-to-Date Insight

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Taking the articular and periarticular structures as a litmus test for gold-based nanoformulations, the potential of gold nanoparticles in protecting the normal physiological functions of these structures particularly in geriatric patients is one of the research areas of current interest. Aside from its use to make the traditional and fashionable ornaments for human usage, the gold metal is also known for its rich therapeutic activity. This is especially true when the gold is converted from its bulk form into nanosized form before its administering into the human body. Since it is the age of nanocomponents in medical and pharmaceutical research areas, this review is therefore mainly focused on nanoparticulate systems consisting of aurum. Accumulating research reports nevertheless show concrete evidence indicating the potential of gold-based nanoformulations to manage joint syndromes such as osteoarthritis and rheumatoid arthritis. This review embarks from preparation techniques and characterization methods to therapeutical application potentials of gold-based nanoformulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADAMTS:

A disintegrin and metalloproteinase with thrombospondin motifs

ICAM-1:

Intercellular adhesion molecule 1

Au:

Gold metal

CCP:

Citrullinated peptide

C-GNPs:

Curcumin-conjugated gold nanoparticles

CIA:

Collagen-induced arthritis

CII:

Type II collagen

CS:

Chondroitin sulfate

DXM:

Dexamethasone

ELISA:

Enzyme-linked immunosorbent assay

Fe:

Iron metal

Gal1:

Galectin 1

GNP:

Gold nanoparticles

HA:

Hyaluronate

HAdase:

Hyaluronidase

HA-SH:

Thiolated HA

HGNs:

Hollow gold nanopheres

HIF1-α:

Hypoxia-inducible factor 1-α

HUVEC:

Human umbilical vein endothelial cell

ICP-MS:

Inductively coupled plasma mass spectrometry

IFN-α:

Interferon-α

IL:

Interleukin

IL-1β:

Interleukin 1β

KD :

Dissociation constant

LDH:

Lactate dehydrogenase

LPS:

Lipopolysaccharide

MALDI:

Matrix-assisted laser desorption ionization

MMP:

Metalloproteinases

3MPS:

3-Mercapto-1-propansulfonate

MTX:

Methotrexate

Nd:

YAG-neodymium-doped yttrium aluminum garnet

NIRF:

Near-infrared fluorescence

NKV:

Naja kaouthia venom

NPs:

Nanoparticles

OA:

Osteoarthritis

PCR:

Polymerase chain reaction

PEG:

Polyethylene glycol

PI3K:

Phosphatidylinositol 3-kinases

PLGA:

Poly(lactic-co-glycolic acid)

RA:

Rheumatoid arthritis

RGD:

Arginine-glycine-aspartic acid

ROS:

Reactive oxygen species

SERS:

Surface-enhanced Raman scattering

TCZ:

Tocilizumab

TEG:

Tetraethylene glycol

TEM:

Transmission electron microscopy

TNF-α:

Tumor necrosis factor-alpha

UV-VIS:

Ultraviolet-visible

VEGF:

Vascular endothelial growth factor

VEGR:

Vascular endothelial growth factor receptor

References

  1. Gomes A, Saha PP, Bhowmik T, Dasgupta AK, Dasgupta SC. Protection against osteoarthritis in experimental animals by nanogold conjugated snake venom protein toxin gold nanoparticle-Naja kaouthia cytotoxin 1. Indian J Med Res. 2016;144(6):910–7. https://doi.org/10.4103/ijmr.IJMR_1078_14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. J Control Release. 2017;252:108–24. https://doi.org/10.1016/j.jconrel.2017.02.032.

    Article  CAS  PubMed  Google Scholar 

  3. Sandler RD, Dunkley L. Osteoarthritis and the inflammatory arthritides. Surgery (Oxford). 2018;36(1):21–6. https://doi.org/10.1016/j.mpsur.2014.10.008.

    Article  Google Scholar 

  4. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001. https://doi.org/10.1038/nrdp.2018.1.

    Article  PubMed  Google Scholar 

  5. Hornos Carneiro MF, Barbosa F Jr. Gold nanoparticles: a critical review of therapeutic applications and toxicological aspects. J Toxi Environ Health, Part B. 2016;19(3–4):129–48. https://doi.org/10.1080/10937404.2016.1168762.

    Article  CAS  Google Scholar 

  6. Guo Q, Guo Q, Yuan J, Zeng J. Biosynthesis of gold nanoparticles using a kind of flavonol: Dihydromyricetin. Colloids Surf A Physicochem Eng Asp. 2014;441:127–32. https://doi.org/10.1016/j.colsurfa.2013.08.067.

    Article  CAS  Google Scholar 

  7. Sharma N, Bhatt G, Kothiyal P. Gold nanoparticles synthesis, properties, and forthcoming applications-a review. Ind J Pharm Biol Rese. 2015;3(2):13. https://doi.org/10.30750/ijpbr.3.2.3.

    Article  CAS  Google Scholar 

  8. Lee JH, Cho HY, Choi H, Lee JY, Choi JW. Application of gold nanoparticle to plasmonic biosensors. Int J Mol Sci. 2018;19(7):2021. https://doi.org/10.3390/ijms19072021.

    Article  CAS  PubMed Central  Google Scholar 

  9. Cabuzu D, Cirja A, Puiu R, Mihai GA. Biomedical applications of gold nanoparticles. Curr Top Med Chem. 2015;15(16):1605–13. https://doi.org/10.2174/1568026615666150414144750.

    Article  CAS  PubMed  Google Scholar 

  10. Rodrigues VC, Moraes ML, Soares JC, Soares AC, Sanfelice R, Deffune E, et al. Immunosensors made with layer-by-layer films on chitosan/gold nanoparticle matrices to detect D-dimer as biomarker for venous thromboembolism. Bull Chem Soc Jpn. 2018;91(6):891–6. https://doi.org/10.1246/bcsj.20180019.

    Article  CAS  Google Scholar 

  11. Dhanya G, Caroline D, Rekha M, Sreenivasan K. Histidine and arginine conjugated starch-PEI and its corresponding gold nanoparticles for gene delivery. Int J Biol Macromol. 2018;120:999–1008. https://doi.org/10.1016/j.ijbiomac.2018.08.

    Article  CAS  PubMed  Google Scholar 

  12. Khoris IM, Takemura K, Lee J, Hara T, Abe F, Suzuki T, et al. Enhanced colorimetric detection of norovirus using in-situ growth of Ag shell on Au NPs. Biosens Bioelectron. 2019;126:425–32. https://doi.org/10.1016/j.bios.2018.10.067.

    Article  CAS  PubMed  Google Scholar 

  13. Tu T-Y, Yang S-J, Tsai M-H, Wang C-H, Lee S-Y, Young T-H, et al. Dual-triggered drug-release vehicles for synergistic cancer therapy. Colloids Surf B: Biointerfaces. 2019;173:788–97. https://doi.org/10.1016/j.colsurfb.2018.10.043.

    Article  CAS  PubMed  Google Scholar 

  14. Shah M, Badwaik V, Kherde Y, Waghwani HK, Modi T, Aguilar ZP, et al. Gold nanoparticles: various methods of synthesis and antibacterial applications. Front Biosci. 2014;19(1320):10.2741. https://doi.org/10.2741/4284.

    Article  Google Scholar 

  15. Dube E, Oluwole DO, Nwaji N, Nyokong T. Glycosylated zinc phthalocyanine-gold nanoparticle conjugates for photodynamic therapy: effect of nanoparticle shape. Spectrochim Acta A Mol Biomol Spectrosc. 2018;203:85–95. https://doi.org/10.1016/j.saa.2018.05.081.

    Article  CAS  PubMed  Google Scholar 

  16. Khan A, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res. 2014;13(7):1169–77. https://doi.org/10.4314/tjpr.v13i7.23.

    Article  CAS  Google Scholar 

  17. Gou X-C, Liu J, Zhang H-L. Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods. Anal Chim Acta. 2010;668(2):208–14. https://doi.org/10.1016/j.aca.2010.04.027.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904–10. https://doi.org/10.1021/acsnano.7b02035.

    Article  CAS  PubMed  Google Scholar 

  19. Kundu S. Gold nanoparticles: their application as i antimicrobial agents and vehicles of gene delivery. Adv in Biotec Microbio. 2017;5(2):556–8. https://doi.org/10.19080/AIBM.2017.04.555658.

    Article  Google Scholar 

  20. Patra A, Métivier R, Piard J, Nakatani K. SHG-active molecular nanorods with intermediate photochromic properties compared to solution and bulk solid states. Chem Commun. 2010;46(34):6385–7. https://doi.org/10.1039/c0cc00985g.

    Article  CAS  Google Scholar 

  21. Habiba K, Makarov VI, Weiner BR, Morell G. Fabrication of nanomaterials by pulsed laser synthesis. Manufacturing Nanostructures: One Central Press, Manchester, UK; 2014.

    Google Scholar 

  22. Iqbal P, Preece JA, Mendes PM. Nanotechnology: the “top-down” and “bottom-up” approaches. Supramolecular chemistry: from molecules to nanomaterials. 2012. https://doi.org/10.1002/9780470661345.smc195.

  23. Sengani M, Grumezescu AM, Rajeswari VD. Recent trends and methodologies in gold nanoparticle synthesis-a prospective review on drug delivery aspect. OpenNano. 2017;2:37–46. https://doi.org/10.1016/j.onano.2017.07.001.

    Article  Google Scholar 

  24. Ovais M, Khalil A, Ayaz M, Ahmad I, Nethi S, Mukherjee S. Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci. 2018;19(12):4100. https://doi.org/10.3390/ijms19124100.

    Article  PubMed Central  Google Scholar 

  25. Sriram MI, Kalishwaralal K, Gurunathan S. Biosynthesis of silver and gold nanoparticles using Bacillus licheniformis. Nanoparticles Bio Med. 2012;160:33–43. https://doi.org/10.1007/978-1-61779-953-2_3.

    Article  CAS  Google Scholar 

  26. Kikuchi F, Kato Y, Furihata K, Kogure T, Imura Y, Yoshimura E, et al. Formation of gold nanoparticles by glycolipids of Lactobacillus casei. Scientific Reports 2016. 2016;6:34626. https://doi.org/10.1038/srep34626.

    Article  CAS  Google Scholar 

  27. Lee H, Lee K, Kim IK, Park TG. Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials. 2008;29(35):4709–18. https://doi.org/10.1016/j.biomaterials.2008.08.038.

    Article  CAS  PubMed  Google Scholar 

  28. Suvarna S, Das U, Sunil K, Mishra S, Sudarshan M, Saha KD, et al. Synthesis of a novel glucose capped gold nanoparticle as a better theranostic candidate. PLoS One. 2017;12(6):e0178202. https://doi.org/10.1371/journal.pone.0178202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shao X, Zhang H, Rajian JR, Chamberland DL, Sherman PS, Quesada CA, et al. 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano. 2011;5(11):8967–73. https://doi.org/10.1021/nn203138t. Epub 2011.

  30. Fournelle M, Bost W, Tarner IH, Lehmberg T, Weiß E, Lemor R, et al. Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis. Nanomedicine. 2012;8(3):346–54. https://doi.org/10.1016/j.nano.2011.06.020.

    Article  CAS  PubMed  Google Scholar 

  31. Brennan F, Maini R, Feldmann M. TNFα—a pivotal role in rheumatoid arthritis? Rheumatology (Oxford). 1992;31(5):293–8. https://doi.org/10.1146/annurev.immunol.14.1.397.

    Article  CAS  Google Scholar 

  32. Palframan R, Airey M, Moore A, Vugler A, Nesbitt A. Use of biofluorescence imaging to compare the distribution of certolizumab pegol, adalimumab, and infliximab in the inflamed paws of mice with collagen-induced arthritis. J Immunol Methods. 2009;348(1–2):36–41. https://doi.org/10.1016/j.jim.2009.06.009.

    Article  CAS  PubMed  Google Scholar 

  33. Li M-L, Wang JC, Schwartz JA, Gill-Sharp KL, Stoica G, Wang LV. In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt. 2009;14(1):010507. https://doi.org/10.1117/1.3081556.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chon H, Wang R, Lee S, Bang S-Y, Lee H-S, Bae S-C, et al. Clinical validation of surface-enhanced Raman scattering-based immunoassays in the early diagnosis of rheumatoid arthritis. Anal Bioanal Chem. 2015;407(27):8353–62. https://doi.org/10.1007/s00216-015-9020-8.

    Article  CAS  PubMed  Google Scholar 

  35. López-Cortés R, Formigo J, Reboiro-Jato M, Fdez-Riverola F, Blanco FJ, Lodeiro C, et al. A methodological approach based on gold-nanoparticles followed by matrix assisted laser desorption ionization time of flight mass spectrometry for the analysis of urine profiling of knee osteoarthritis. Talanta. 2016;150:638–45. https://doi.org/10.1016/j.talanta.2015.06.043.

    Article  CAS  PubMed  Google Scholar 

  36. Chen Y-L, Wang C-R, Tsai C-Y, et al. Multivalent structure of galectin-1-nanogold complex serves as potential therapeutics for rheumatoid arthritis by enhancing receptor clustering. Eur Cell Mater. 2012;23:170–81. https://doi.org/10.22203/ecm.v023a13.

    Article  PubMed  Google Scholar 

  37. Brandt B, Büchse T, Abou-Eladab EF, Tiedge M, Krause E, Jeschke U, et al. Galectin-1 induced activation of the apoptotic death-receptor pathway in human Jurkat T lymphocytes. Histochem Cell Biol. 2008;129(5):599–609. https://doi.org/10.1007/s00418-008-0395-x.

    Article  CAS  PubMed  Google Scholar 

  38. Lange F, Brandt B, Tiedge M, Jonas L, Jeschke U, Pöhland R, et al. Galectin-1 induced activation of the mitochondrial apoptotic pathway: evidence for a connection between death-receptor and mitochondrial pathways in human Jurkat T lymphocytes. Histochem Cell Biol. 2009;132(2):211–23. https://doi.org/10.1007/s00418-009-0597-x.

    Article  CAS  PubMed  Google Scholar 

  39. Venditti I, Fontana L, Fratoddi I, Battocchio C, Cametti C, Sennato S, et al. Direct interaction of hydrophilic gold nanoparticles with dexamethasone drug: loading and release study. J Colloid Interface Sci. 2014;418:52–60. https://doi.org/10.1016/j.jcis.2013.11.063.

    Article  CAS  PubMed  Google Scholar 

  40. Lee H, Lee M-Y, Bhang SH, Kim B-S, Kim YS, Ju JH, et al. Hyaluronate–gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano. 2014;8(5):4790–8. https://doi.org/10.1021/nn500685h.

    Article  CAS  PubMed  Google Scholar 

  41. Nishimoto N, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Azuma J, et al. Study of active controlled tocilizumab monotherapy for rheumatoid arthritis patients with an inadequate response to methotrexate (SATORI): significant reduction in disease activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy. Mod Rheumatol. 2009;19(1):12–9. https://doi.org/10.1007/s10165-008-0125-1.

    Article  CAS  PubMed  Google Scholar 

  42. Lee M-Y, Yang J-A, Jung HS, Beack S, Choi JE, Hur W, et al. Hyaluronic acid–gold nanoparticle/interferon α complex for targeted treatment of hepatitis C virus infection. ACS Nano. 2012;6(11):9522–31. https://doi.org/10.1021/nn302538y.

    Article  CAS  PubMed  Google Scholar 

  43. Rouhana LL, Moussallem MD, Schlenoff JB. Adsorption of short-chain thiols and disulfides onto gold under defined mass transport conditions: coverage, kinetics, and mechanism. J Am Chem Soc. 2011;133(40):16080–91. https://doi.org/10.1021/ja2041833.

    Article  CAS  PubMed  Google Scholar 

  44. Häkkinen H. The gold–sulfur interface at the nanoscale. Nat Chem. 2012;4(6):443. https://doi.org/10.1038/nchem.1352.

    Article  CAS  PubMed  Google Scholar 

  45. Kim HJ, Lee S-M, Park K-H, Mun CH, Park Y-B, Yoo K-H. Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials. 2015;61:95–102. https://doi.org/10.1016/j.biomaterials.2015.05.018.

    Article  CAS  PubMed  Google Scholar 

  46. Dwivedi P, Nayak V, Kowshik M. Role of gold nanoparticles as drug delivery vehicles for chondroitin sulfate in the treatment of osteoarthritis. Biotechnol Prog. 2015;31(5):1416–22. https://doi.org/10.1002/btpr.2147.

    Article  CAS  PubMed  Google Scholar 

  47. Park C, Youn H, Kim H, Noh T, Kook YH, Oh ET, et al. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem. 2009;19(16):2310–5. https://doi.org/10.1039/B816209C.

    Article  CAS  Google Scholar 

  48. Uebelhart D. Clinical review of chondroitin sulfate in osteoarthritis. Osteoarthr Cartil. 2008;16:S19–21. https://doi.org/10.1016/j.joca.2008.06.006.

    Article  PubMed  Google Scholar 

  49. Campos WS, Marangoni V, Sonego D, Andrade M, Colodel E, de Souza R. Synthesis and characterization of gold nanoparticles combined with curcumin and its effect on experimental osteoarthritis in mice. Osteoarthr Cartil. 2015;23:A397. https://doi.org/10.1016/j.joca.2015.02.732.

    Article  Google Scholar 

  50. Javed I, Hussain SZ, Shahzad A, Khan JM, Rehman M, Usman F, et al. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein—in-vitro and in-vivo study. Colloids Surf B: Biointerfaces. 2016;141:1–9. https://doi.org/10.1016/j.colsurfb.2016.01.022.

    Article  CAS  PubMed  Google Scholar 

  51. Bhowmik T, Gomes A. NKCT1 (purified Naja kaouthia protein toxin) conjugated gold nanoparticles induced Akt/mTOR inactivation mediated autophagic and caspase 3 activated apoptotic cell death in leukemic cell. Toxicon. 2016;121:86–97. https://doi.org/10.1016/j.toxicon.2016.08.004.

    Article  CAS  PubMed  Google Scholar 

  52. Hoshikawa A, Tagami T, Morimura C, Fukushige K, Ozeki T. Ranibizumab biosimilar/polyethyleneglycol-conjugated gold nanoparticles as a novel drug delivery platform for age-related macular degeneration. J Drug Deliv Sci Technol. 2017;38:45–50. https://doi.org/10.1016/j.jddst.2017.01.004.

    Article  CAS  Google Scholar 

  53. Pascarelli NA, Moretti E, Terzuoli G, Lamboglia A, Renieri T, Fioravanti A, et al. Effects of gold and silver nanoparticles in cultured human osteoarthritic chondrocytes. J Appl Toxicol. 2013;33(12):1506–13. https://doi.org/10.1002/jat.2912.

    Article  CAS  PubMed  Google Scholar 

  54. Cawston TE, Young DA. Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res. 2010;339(1):221. https://doi.org/10.1007/s00441-009-0887-6.

    Article  CAS  PubMed  Google Scholar 

  55. Sumbayev VV, Yasinska IM, Garcia CP, Gilliland D, Lall GS, Gibbs BF, et al. Gold nanoparticles downregulate interleukin-1β-induced pro-inflammatory responses. Small. 2013;9(3):472–7. https://doi.org/10.1002/smll.201201528.

    Article  CAS  PubMed  Google Scholar 

  56. Gibbs BF, Yasinska IM, Oniku AE, Sumbayev VV. Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells. PLoS One. 2011;6(7):e22502. https://doi.org/10.1371/journal.pone.0022502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. James LR, Xu Z-Q, Sluyter R, Hawksworth EL, Kelso C, Lai B, et al. An investigation into the interactions of gold nanoparticles and anti-arthritic drugs with macrophages, and their reactivity towards thioredoxin reductase. J Inorg Biochem. 2015;142:28–38. https://doi.org/10.1016/j.jinorgbio.2014.09.013.

    Article  CAS  PubMed  Google Scholar 

  58. Chueh PJ, Liang R-Y, Lee Y-H, Zeng Z-M, Chuang S-M. Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines. J Hazard Mater. 2014;264:303–12. https://doi.org/10.1016/j.jhazmat.2013.11.031.

    Article  CAS  PubMed  Google Scholar 

  59. Moyano DF, Liu Y, Ayaz F, Hou S, Puangploy P, Duncan B, et al. Immunomodulatory effects of coated gold nanoparticles in LPS-stimulated in vitro and in vivo murine model systems. Chem. 2016;1(2):320–7. https://doi.org/10.1016/j.chempr.2016.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Juskewitch JE, Platt JL, Knudsen BE, Knutson KL, Brunn GJ, Grande JP. Disparate roles of marrow-and parenchymal cell-derived TLR4 signaling in murine LPS-induced systemic inflammation. Sci Rep. 2012;2:918. https://doi.org/10.1038/srep00918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jones KJ, Perris AD, Vernallis AB, Worthington T, Lambert PA, Elliott TS. Induction of inflammatory cytokines and nitric oxide in J774. 2 cells and murine macrophages by lipoteichoic acid and related cell wall antigens from Staphylococcus epidermidis. J Med Microbiol. 2005;54(4):315–21. https://doi.org/10.1099/jmm.0.45872-0.

    Article  CAS  PubMed  Google Scholar 

  62. Moyano DF, Goldsmith M, Solfiell DJ, Landesman-Milo D, Miranda OR, Peer D, et al. Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc. 2012;134(9):3965–7. https://doi.org/10.1021/ja2108905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Shima F, Akagi T, Uto T, Akashi M. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly (γ-glutamic acid) nanoparticles. Biomaterials. 2013;34(37):9709–16. https://doi.org/10.1016/j.biomaterials.2013.08.064.

    Article  CAS  PubMed  Google Scholar 

  64. Labens R, Lascelles BDX, Charlton AN, Ferrero NR, Van Wettere AJ, Xia X-R, et al. Ex vivo effect of gold nanoparticles on porcine synovial membrane. Tissue Barriers. 2013;1(2):e24314. https://doi.org/10.4161/tisb.24314.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tsai CY, Shiau AL, Chen SY, Chen YH, Cheng PC, Chang MY, et al. Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum. 2007;56(2):544–54.

    Article  Google Scholar 

  66. González-Ballesteros N, Rodríguez-González J, Rodríguez-Argüelles M. Harnessing the wine dregs: an approach towards a more sustainable synthesis of gold and silver nanoparticles. J Photochem Photobiol B Biol. 2018;178:302–9. https://doi.org/10.1016/j.jphotobiol.2017.11.025.

    Article  CAS  Google Scholar 

  67. Kumar SSD, Mahesh A, Antoniraj MG, Rathore HS, Houreld N, Kandasamy R. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells. Int J Biol Macromol. 2018;109:220–30. https://doi.org/10.1016/j.ijbiomac.2017.12.069.

    Article  CAS  PubMed  Google Scholar 

  68. Castro-Guerrero C, Morales-Cepeda A, Hernández-Vega L, Díaz-Guillén M. Fructose-mediated gold nanoparticles synthesis. Cogent Chem. 2018;4(1):1447262. https://doi.org/10.1080/23312009.2018.1447262.

    Article  CAS  Google Scholar 

  69. H-j Y, Y-a Y, T-n T, Cheng K-m, X-a C, Y-c C, et al. Positively charged gold nanoparticles capped with folate quaternary chitosan: synthesis, cytotoxicity, and uptake by cancer cells. Carbohydr Polym. 2018;183:140–50. https://doi.org/10.1016/j.carbpol.2017.11.096.

    Article  CAS  Google Scholar 

  70. Uthaman S, Kim HS, Revuri V, Min J-J, Lee Y-k, Huh KM, et al. Green synthesis of bioactive polysaccharide-capped gold nanoparticles for lymph node CT imaging. Carbohydr Polym. 2018;181:27–33. https://doi.org/10.1016/j.carbpol.2017.10.042.

    Article  CAS  PubMed  Google Scholar 

  71. Ramasamy M, Lee J-H, Lee J. Direct one-pot synthesis of cinnamaldehyde immobilized on gold nanoparticles and their antibiofilm properties. Colloids Surf B: Biointerfaces. 2017;160:639–48. https://doi.org/10.1016/j.colsurfb.2017.

    Article  CAS  PubMed  Google Scholar 

  72. Vijayan R, Joseph S, Mathew B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artificial Cells, Nanomed, Biotec. 2018;46(4):861–71. https://doi.org/10.1080/21691401.2017.1345930.

    Article  CAS  Google Scholar 

  73. Singh H, Du J, Singh P, Yi TH. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artificial Cells, Nanomed, Biotech. 2018;46(6):1163–70. https://doi.org/10.1080/21691401.2017.1362417.

    Article  CAS  Google Scholar 

  74. Sun L, Li J, Cai J, Zhong L, Ren G, Ma Q. One pot synthesis of gold nanoparticles using chitosan with varying degree of deacetylation and molecular weight. Carbohydr Polym. 2017;178:105–14. https://doi.org/10.1016/j.carbpol.2017.09.032.

    Article  CAS  PubMed  Google Scholar 

  75. Oh KH, Soshnikova V, Markus J, Kim YJ, Lee SC, Singh P, et al. Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities. Artificial Cells, Nanomed, Biotech. 2018;46(3):599–606. https://doi.org/10.1080/21691401.2017.1332636.

    Article  CAS  Google Scholar 

  76. Laksee S, Puthong S, Teerawatananond T, Palaga T, Muangsin N. Highly efficient and facile fabrication of monodispersed Au nanoparticles using pullulan and their application as anticancer drug carriers. Carbohydr Polym. 2017;173:178–91.

    Article  CAS  Google Scholar 

  77. Emmanuel R, Saravanan M, Ovais M, Padmavathy S, Shinwari ZK, Prakash P. Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: a nanoantibiotic approach. Microb Pathog. 2017;113:295–302. https://doi.org/10.1016/j.carbpol.2017.05.101.

    Article  CAS  PubMed  Google Scholar 

  78. Hart C, Abuladel N, Bee M, Kreider MC, CVitan AC, Esson MM, et al. Protein-templated gold nanoparticle synthesis: protein organization, controlled gold sequestration, and unexpected reaction products. Dalton Trans. 2017;46(47):16465–73. https://doi.org/10.1039/c7dt03275g.

    Article  CAS  PubMed  Google Scholar 

  79. Pal K, Al-Suraih F, Gonzalez-Rodriguez R, Dutta SK, Wang E, Kwak HS, et al. Multifaceted peptide assisted one-pot synthesis of gold nanoparticles for plectin-1 targeted gemcitabine delivery in pancreatic cancer. Nanoscale. 2017;9(40):15622–34. https://doi.org/10.1039/c7nr03172f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kang JP, Kim YJ, Singh P, Huo Y, Soshnikova V, Markus J, et al. Biosynthesis of gold and silver chloride nanoparticles mediated by Crataegus pinnatifida fruit extract: in vitro study of anti-inflammatory activities. Artificial Cells, Nanomed, Biotec. 2018;46(8):1530–40. https://doi.org/10.1080/21691401.2017.1376674.

    Article  CAS  Google Scholar 

  81. Yulizar Y, Ariyanta HA, Abduracman L. Green synthesis of gold nanoparticles using aqueous garlic (Allium sativum L.) extract, and its interaction study with melamine. Bulletin Chem Reaction Engg Catalysis. 2017;12(2):212–8. https://doi.org/10.9767/bcrec.12.2.770.212-218.

    Article  CAS  Google Scholar 

  82. Chahardoli A, Karimi N, Sadeghi F, Fattahi A. Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artificial Cells, Nanomed, Biotech. 2018;46(3):579–88. https://doi.org/10.1080/21691401.2017.1332634.

    Article  CAS  Google Scholar 

  83. Zada S, Ahmad A, Khan S, Iqbal A, Ahmad S, Ali H, et al. Biofabrication of gold nanoparticles by Lyptolyngbya JSC-1 extract as super reducing and stabilizing agents: synthesis, characterization and antibacterial activity. Microb Pathog. 2018;114:116–23. https://doi.org/10.1016/j.micpath.2017.11.038.

    Article  CAS  PubMed  Google Scholar 

  84. Li X, Wang Z, Li Y, Bian K, Yin T, Gao D. Self-assembly of bacitracin-gold nanoparticles and their toxicity analysis. Mater Sci Eng C. 2018;82:310–6. https://doi.org/10.1016/j.msec.2017.07.053.

    Article  CAS  Google Scholar 

  85. Singh DK, Kumar J, Sharma VK, Verma SK, Singh A, Kumari P, et al. Mycosynthesis of bactericidal silver and polymorphic gold nanoparticles: physicochemical variation effects and mechanism. Nanomed. 2018;13(2):191–207. https://doi.org/10.2217/nnm-2017-0235.

    Article  CAS  Google Scholar 

  86. Ranjitha V, Rai VR. Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech. 2017;7(5):299. https://doi.org/10.1007/s13205-017-0930-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pei X, Qu Y, Shen W, Li H, Zhang X, Li S, et al. Green synthesis of gold nanoparticles using fungus Mariannaea sp. HJ and their catalysis in reduction of 4-nitrophenol. Environ Sci Pollut Res. 2017;24(27):21649–59. https://doi.org/10.1007/s11356-017-9684-z.

    Article  CAS  Google Scholar 

  88. Qu Y, You S, Zhang X, Pei X, Shen W, Li Z, et al. Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction. Bioprocess Biosyst Eng. 2018;41(3):359–67. https://doi.org/10.1007/s00449-017-1869-9.

    Article  CAS  PubMed  Google Scholar 

  89. Samanta S, Singh BR, Adholeya A. Intracellular synthesis of gold nanoparticles using an ectomycorrhizal strain EM-1083 of Laccaria fraterna and its nanoanti-quorum sensing potential against Pseudomonas aeruginosa. Indian J Microbiol. 2017;57(4):448–60. https://doi.org/10.1007/s12088-017-0662-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Manjunath HM, Joshi CG, Raju NG. Biofabrication of gold nanoparticles using marine endophytic fungus–Penicillium citrinum. IET Nanobiotech. 2016;11(1):40–4. https://doi.org/10.1049/iet-nbt.2016.0065.

    Article  Google Scholar 

  91. Adena SKR, Upadhyay M, Vardhan H, Mishra B. Development, optimization, and in vitro characterization of dasatinib-loaded PEG functionalized chitosan capped gold nanoparticles using Box–Behnken experimental design. Drug Dev Ind Pharm. 2018;44(3):493–501. https://doi.org/10.1080/03639045.2017.1402919.

    Article  CAS  PubMed  Google Scholar 

  92. Jin J, Liu T, Li M, Yuan C, Liu Y, Tang J, et al. Rapid in situ biosynthesis of gold nanoparticles in living platelets for multimodal biomedical imaging. Colloids Surf B: Biointerfaces. 2018;163:385–93. https://doi.org/10.1016/j.colsurfb.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  93. Safwat MA, Soliman GM, Sayed D, Attia MA. Gold nanoparticles capped with benzalkonium chloride and poly (ethylene imine) for enhanced loading and skin permeability of 5-fluorouracil. Drug Dev Ind Pharm. 2017;43(11):1780–91. https://doi.org/10.1080/03639045.2017.1339082.

    Article  CAS  PubMed  Google Scholar 

  94. Sachdev S, Maugi R, Woolley J, Kirk C, Zhou Z, Christie SD, et al. Synthesis of gold nanoparticles using the interface of an emulsion droplet. Langmuir. 2017;33(22):5464–72. https://doi.org/10.1021/acs.langmuir.7b00564.

    Article  CAS  PubMed  Google Scholar 

  95. Kang S, Kang K, Huh H, Kim H, Chang S-J, Park TJ, et al. Reducing agent-assisted excessive galvanic replacement mediated seed-mediated synthesis of porous gold nanoplates and highly efficient gene-thermo cancer therapy. ACS Appl Mater Interfaces. 2017;9(40):35268–78. https://doi.org/10.1021/acsami.7b13028.

    Article  CAS  PubMed  Google Scholar 

  96. Man RW, Li C-H, MacLean MW, Zenkina OV, Zamora MT, Saunders LN, et al. Ultrastable gold nanoparticles modified by bidentate N-heterocyclic carbene ligands. J Am Chem Soc. 2018;140(5):1576–9. https://doi.org/10.1021/jacs.7b08516.

    Article  CAS  PubMed  Google Scholar 

  97. Young AJ, Serpell CJ, Chin JM, Reithofer MR. Optically active histidin-2-ylidene stabilised gold nanoparticles. Chem Commun. 2017;53(92):12426–9. https://doi.org/10.1039/C7CC07602A.

    Article  CAS  Google Scholar 

  98. Suganya P, Vaseeharan B, Vijayakumar S, Balan B, Govindarajan M, Alharbi NS, et al. Biopolymer zein-coated gold nanoparticles: synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J Photochem Photobiol B Biol. 2017;173:404–11. https://doi.org/10.1016/j.jphotobiol.2017.06.004.

    Article  CAS  Google Scholar 

  99. Khatoon N, Yasin H, Younus M, Ahmed W, Rehman N, Zakaullah M, et al. Synthesis and spectroscopic characterization of gold nanoparticles via plasma-liquid interaction technique. AIP Adv. 2018;8(1):015130. https://doi.org/10.1063/1.5004470.

    Article  CAS  Google Scholar 

  100. Jung YL, Lee CY, Park JH, Park KS, Park HG. A signal-on, colorimetric determination of deoxyribonuclease I activity utilizing the photoinduced synthesis of gold nanoparticles. Nanoscale. 2018;10(9):4339–43. https://doi.org/10.1039/C7NR09542B.

    Article  CAS  PubMed  Google Scholar 

  101. Macioszczyk J, Rac-Rumijowska O, Słobodzian P, Teterycz H, Malecha K. Microfluidical microwave reactor for synthesis of gold nanoparticles. Micromachines. 2017;8(11):318. https://doi.org/10.3390/mi8110318.

    Article  PubMed Central  Google Scholar 

  102. Shiraishi Y, Tanaka H, Sakamoto H, Hayashi N, Kofuji Y, Ichikawa S, et al. Synthesis of au nanoparticles with benzoic acid as reductant and surface stabilizer promoted solely by UV light. Langmuir. 2017;33(48):13797–804. https://doi.org/10.1021/acs.langmuir.7b03192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The collection of scientific literatures from books, subscribed and open-access journals, Internet, etc. are provided jointly by NIPER-Guwahati and LPU. The authors would like to thank their colleagues for innumerable discussions which laid the foundation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamilvanan Shunmugaperumal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest..

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Famta, P., Famta, M., Kaur, J. et al. Protecting the Normal Physiological Functions of Articular and Periarticular Structures by Aurum Nanoparticle-Based Formulations: an Up-to-Date Insight. AAPS PharmSciTech 21, 95 (2020). https://doi.org/10.1208/s12249-020-1636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-020-1636-0

KEY WORDS

Navigation