Skip to main content

Advertisement

Log in

Chitosan-Modified PLGA Nanoparticles with Versatile Surface for Improved Drug Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Shortage of functional groups on surface of poly(lactide-co-glycolide) (PLGA)-based drug delivery carriers always hampers its wide applications such as passive targeting and conjugation with targeting molecules. In this research, PLGA nanoparticles were modified with chitosan through physical adsorption and chemical binding methods. The surface charges were regulated by altering pH value in chitosan solutions. After the introduction of chitosan, zeta potential of the PLGA nanoparticle surface changed from negative charge to positive one, making the drug carriers more affinity to cancer cells. Functional groups were compared between PLGA nanoparticles and chitosan-modified PLGA nanoparticles. Amine groups were exhibited on PLGA nanoparticle surface after the chitosan modification as confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The modified nanoparticles showed an initial burst release followed by a moderate and sustained release profile. Higher percentage of drugs from cumulative release can be achieved in the same prolonged time range. Therefore, PLGA nanoparticles modified by chitosan showed versatility of surface and a possible improvement in the efficacy of current PLGA-based drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Dev A, Binulal NS, Anitha A, Nair SV, Furuike T, Tamura H, et al. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr Polym. 2010;80(3):833–8. doi:10.1016/j.carbpol.2009.12.040.

    Article  CAS  Google Scholar 

  2. Hood E, Simone E, Wattamwar P, Dziubla T, Muzykantov V. Nanocarriers for vascular delivery of antioxidants. Nanomedicine. 2011;6(7):1257–72. doi:10.2217/nnm.11.92.

    Article  CAS  PubMed  Google Scholar 

  3. Jeon O, Lim H-W, Lee M, Song SJ, Kim B-S. Poly(l-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA. J Drug Target. 2007;15(3):190–8. doi:10.1080/10611860601143479.

    Article  CAS  PubMed  Google Scholar 

  4. Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008;16(2):108–23. doi:10.1080/10611860701794353.

    Article  CAS  PubMed  Google Scholar 

  5. Li P, Wang Y, Zeng F, Chen L, Peng Z, Kong LX. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr Res. 2011;346(6):801–6. doi:10.1016/j.carres.2011.01.027.

    Article  CAS  PubMed  Google Scholar 

  6. Shen H, Hu X, Yang F, Bei J, Wang S. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide). Biomaterials. 2007;28(29):4219–30. doi:10.1016/j.biomaterials.2007.06.004.

    Article  CAS  PubMed  Google Scholar 

  7. Shen H, Hu XX, Bei JZ, Wang SG. The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Biomaterials. 2008;29(15):2388–99. doi:10.1016/j.biomaterials.2008.02.008.

    Article  CAS  PubMed  Google Scholar 

  8. Yang J, Wan YQ, Yang JL, Bei JZ, Wang SG. Plasma-treated, collagen-anchored polylactone: Its cell affinity evaluation under shear or shear-free conditions. J Biomed Mater Res A. 2003;67A(4):1139–47. doi:10.1002/jbm.a.10034.

    Article  CAS  Google Scholar 

  9. Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M. Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf Interface Anal. 2008;40(11):1444–53. doi:10.1002/sia.2923.

    Article  CAS  Google Scholar 

  10. Contado C, Vighi E, Dalpiaz A, Leo E. Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation. Anal Bioanal Chem. 2013;405(2–3):703–11.

    Article  CAS  PubMed  Google Scholar 

  11. Guo WJ, Lee T, Sudimack J, Lee RJ. Receptor-specific delivery of liposomes via folate-PEG-Chol. J Liposome Res. 2000;10(2–3):179–95.

    Article  CAS  Google Scholar 

  12. Esmaeili F, Ghahremani MH, Ostad SN, Atyabi F, Seyedabadi M, Malekshahi MR, et al. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target. 2008;16(5):415–23. doi:10.1080/10611860802088630.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao HZ, Yue L, Yung L. Selectivity of folate conjugated polymer micelles against different tumor cells. Int J Pharm. 2008;349(1–2):256–68. doi:10.1016/j.ijpharm.2007.07.040.

    Article  CAS  PubMed  Google Scholar 

  14. Barbucci R, Lamponi S, Magnani A, Peluso G, Petillo O. Metal complexes with linear and crosslinked polysaccharides as mediators of angiogenesis. Polym Adv Technol. 2001;12(3–4):271–8. doi:10.1002/pat.141.

    Article  CAS  Google Scholar 

  15. Li P, Wang Y, Peng Z, She F, Kong L. Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohydr Polym. 2011;85(3):698–704. doi:10.1016/j.carbpol.2011.03.045.

    Article  CAS  Google Scholar 

  16. Ku Y, Shim IK, Lee JY, Park YJ, Rhee SH, Nam SH, et al. Chitosan/poly(l-lactic acid) multilayered membrane for guided tissue regeneration. J Biomed Mater Res A. 2009;90A(3):766–72. doi:10.1002/jbm.a.31846.

    Article  CAS  Google Scholar 

  17. Crcarevska MS, Dodov MG, Goracinova K. Chitosan coated Ca-alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. Eur J Pharm Biopharm. 2008;68(3):565–78. doi:10.1016/j.ejpb.2007.06.007.

    Article  Google Scholar 

  18. Chandy T, Wilson RF, Rao GHR, Das GS. Changes in cisplatin delivery due to surface-coated poly (lactic acid)–poly(∊-caprolactone)microspheres. J Biomater Appl. 2002;16(4):275–91. doi:10.1106/088532802024246.

    Article  CAS  PubMed  Google Scholar 

  19. Kato Y, Onishi H, Machida Y. Application of chitin and chitosan derivatives in the pharmaceutical field. Curr Pharm Biotechnol. 2003;4(5):303–9. doi:10.2174/1389201033489748.

    Article  CAS  PubMed  Google Scholar 

  20. Lim DW, Park TG. Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: characterization and use as protein-delivery microparticulate carriers. J Appl Polym Sci. 2000;75(13):1615–23. doi:10.1002/(sici)1097-4628(20000328)75:13<1615::aid-app7>3.0.co;2-l.

    Article  CAS  Google Scholar 

  21. Pasut G, Canal F, Dalla Via L, Arpicco S, Veronese FM, Schiavon O. Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J Control Release. 2008;127(3):239–48. doi:10.1016/j.jconrel.2008.02.002.

    Article  CAS  PubMed  Google Scholar 

  22. Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1–2):172–9. doi:10.1016/j.ijpharm.2006.06.023.

    Article  CAS  PubMed  Google Scholar 

  23. Müller RH, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int J Pharm. 2002;237(1–2):151–61. doi:10.1016/s0378-5173(02)00040-6.

    Article  PubMed  Google Scholar 

  24. Guo CQ, Gemeinhart RA. Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles. Eur J Pharm Biopharm. 2008;70(2):597–604. doi:10.1016/j.ejpb.2008.06.008.

    Article  CAS  PubMed  Google Scholar 

  25. Quemeneur F, Rinaudo M, Pépin-Donat B. Influence of molecular weight and pH on adsorption of chitosan at the surface of large and giant vesicles. Biomacromolecules. 2007;9(1):396–402. doi:10.1021/bm700943j.

    Article  PubMed  Google Scholar 

  26. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9. doi:10.1016/j.ejpb.2007.08.001.

    Article  CAS  PubMed  Google Scholar 

  27. Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials. 2010;31(5):908–15. doi:10.1016/j.biomaterials.2009.09.104.

    Article  CAS  PubMed  Google Scholar 

  28. Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol (R)). J Control Release. 2002;80(1–3):129–44.

    Article  CAS  PubMed  Google Scholar 

  29. Huang YC, Huang CC, Huang YY, Chen KS. Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. J Biomed Mater Res A. 2007;82A(4):842–51. doi:10.1002/jbm.a.31036.

    Article  CAS  Google Scholar 

  30. Morlock M, Kissel T, Li YX, Koll H, Winter G. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in vitro release properties. J Control Release. 1998;56(1–3):105–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxue Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Li, P. & Kong, L. Chitosan-Modified PLGA Nanoparticles with Versatile Surface for Improved Drug Delivery. AAPS PharmSciTech 14, 585–592 (2013). https://doi.org/10.1208/s12249-013-9943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9943-3

KEY WORDS

Navigation