Skip to main content

Advertisement

Log in

Combined Use of In Vitro Phototoxic Assessments and Cassette Dosing Pharmacokinetic Study for Phototoxicity Characterization of Fluoroquinolones

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The present study aimed to develop an effective screening strategy to predict in vivo phototoxicity of multiple compounds by combined use of in vitro phototoxicity assessments and cassette dosing pharmacokinetic (PK) studies. Photochemical properties of six fluoroquinolones (FQs) were evaluated by UV spectral and reactive oxygen species (ROS) assays, and phototoxic potentials of FQs were also assessed using 3T3 neutral red uptake phototoxicity test (3T3 NRU PT) and intercalator-based photogenotoxicity (IBP) assay. Cassette dosing pharmacokinetics on FQs was conducted for calculating PK parameters and dermal distribution. All the FQs exhibited potent UV/VIS absorption and ROS generation under light exposure, suggesting potent photosensitivity of FQs. In vitro phototoxic risks of some FQs were also elucidated by 3T3 NRU PT and IBP assay. Decision matrix for phototoxicity prediction was built upon these in vitro data, taken together with outcomes from cassette dosing PK studies. According to the decision matrix, most FQs were deduced to be phototoxic, although gatifloxacin was found to be less phototoxic. These findings were in agreement with clinical observations. Combined use of in vitro photobiochemical and cassette dosing PK data will be useful for predicting in vivo phototoxic potentials of drug candidates with high productivity and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

3T3 NRU PT 3T3:

Neutral red uptake phototoxicity test

ACN:

Acetonitrile

ANOVA:

Analysis of variance

AUC0→∞ :

Area under concentration versus time curve

AUMC0→∞ :

Area under moment curve

C max :

Maximum concentration

CPFX:

Ciprofloxacin

DMEM:

Dulbecco’s modified Eagle’s medium

dsDNA:

Double-stranded DNA

EBSS:

Earle’s balanced salt solution

EMEA:

European Medicines Agency

FDA:

Food and Drug Administration

FQ:

Fluoroquinolone

GFLX:

Gatifloxacin

IBP:

Intercalator-based photogenotoxicity

k el :

Elimination rate constant

K p :

Value tissue to plasma concentration ratio

LFLX:

Lomefloxacin

LVFX:

Levofloxacin

MRT:

Mean residence time

NBT:

Nitroblue tetrazolium

NaPB:

Sodium phosphate buffer

NFLX:

Norfloxacin

OECD:

Organisation for Economic Co-operation and Development

PBS:

Phosphate-buffered saline

PIF:

Photoirritation factor

PK:

Pharmacokinetic

RNO:

p-Nitrosodimethylaniline

ROS:

Reactive oxygen species

SPFX:

Sparfloxacin

t 1/2 :

Elimination half-life

T max :

Time to reach maximum level

TO:

Thiazole orange

UPLC/ESI-MS:

Ultra-performance liquid chromatography equipped with electorospray ionization mass spectrometry

UV:

Ultraviolet

VIS:

Visible light

References

  1. Onoue S, Seto Y, Gandy G, Yamada S. Drug-induced phototoxicity; an early in vitro identification of phototoxic potential of new drug entities in drug discovery and development. Curr Drug Saf. 2009;4(2):123–36.

    Article  PubMed  CAS  Google Scholar 

  2. Epstein S. The photopatch test; its technique, manifestations, and significance. Ann Allergy. 1964;22:1–11.

    PubMed  CAS  Google Scholar 

  3. Epstein JH, Wintroub BU. Photosensitivity due to drugs. Drugs. 1985;30(1):42–57.

    Article  PubMed  CAS  Google Scholar 

  4. Henry B, Foti C, Alsante K. Can light absorption and photostability data be used to assess the photosafety risks in patients for a new drug molecule? J Photochem Photobiol B. 2009;96(1):57–62.

    Article  PubMed  CAS  Google Scholar 

  5. Kleinman MH, Smith MD, Kurali E, Kleinpeter S, Jiang K, Zhang Y, et al. An evaluation of chemical photoreactivity and the relationship to phototoxicity. Regul Toxicol Pharmacol. 2010;58(2):224–32.

    Article  PubMed  CAS  Google Scholar 

  6. Onoue S, Tsuda Y. Analytical studies on the prediction of photosensitive/phototoxic potential of pharmaceutical substances. Pharm Res. 2006;23(1):156–64.

    Article  PubMed  CAS  Google Scholar 

  7. Onoue S, Ochi M, Gandy G, Seto Y, Igarashi N, Yamauchi Y, et al. High-throughput screening system for identifying phototoxic potential of drug candidates based on derivatives of reactive oxygen metabolites. Pharm Res. 2010;27(8):1610–9.

    Article  PubMed  CAS  Google Scholar 

  8. Onoue S, Igarashi N, Kitagawa F, Otsuka K, Tsuda Y. Capillary electrophoretic studies on the photogenotoxic potential of pharmaceutical substances. J Chromatogr A. 2008;1188(1):50–6.

    Article  PubMed  CAS  Google Scholar 

  9. Seto Y, Ochi M, Onoue S, Yamada S. High-throughput screening strategy for photogenotoxic potential of pharmaceutical substances using fluorescent intercalating dye. J Pharm Biomed Anal. 2010;52(5):781–6.

    Article  PubMed  CAS  Google Scholar 

  10. Seto Y, Onoue S, Yamada S. In vitro/in vivo phototoxic risk assessments of griseofulvin based on photobiochemical and pharmacokinetic behaviors. Eur J Pharm Sci. 2009;38(2):104–11.

    Article  PubMed  CAS  Google Scholar 

  11. Allen MC, Shah TS, Day WW. Rapid determination of oral pharmacokinetics and plasma free fraction using cocktail approaches: methods and application. Pharm Res. 1998;15(1):93–7.

    Article  PubMed  CAS  Google Scholar 

  12. Smith NF, Raynaud FI, Workman P. The application of cassette dosing for pharmacokinetic screening in small-molecule cancer drug discovery. Mol Cancer Ther. 2007;6(2):428–40.

    Article  PubMed  CAS  Google Scholar 

  13. White RE, Manitpisitkul P. Pharmacokinetic theory of cassette dosing in drug discovery screening. Drug Metab Dispos. 2001;29(7):957–66.

    PubMed  CAS  Google Scholar 

  14. Przybilla B, Georgii A, Bergner T, Ring J. Demonstration of quinolone phototoxicity in vitro. Dermatologica. 1990;181(2):98–103.

    Article  PubMed  CAS  Google Scholar 

  15. Marutani K, Matsumoto M, Otabe Y, Nagamuta M, Tanaka K, Miyoshi A, et al. Reduced phototoxicity of a fluoroquinolone antibacterial agent with a methoxy group at the 8 position in mice irradiated with long-wavelength UV light. Antimicrob Agents Chemother. 1993;37(10):2217–23.

    PubMed  CAS  Google Scholar 

  16. Matsumoto M, Kojima K, Nagano H, Matsubara S, Yokota T. Photostability and biological activity of fluoroquinolones substituted at the 8 position after UV irradiation. Antimicrob Agents Chemother. 1992;36(8):1715–9.

    PubMed  CAS  Google Scholar 

  17. Kraljic I, Mohsni SE. A new method for the detection of singlet oxygen in aqueous solutions. Photochem Photobiol. 1978;28:577–81.

    Article  CAS  Google Scholar 

  18. Pathak MA, Joshi PC. Production of active oxygen species (1O2 and O 2 .) by psoralens and ultraviolet radiation (320–400 nm). Biochim Biophys Acta. 1984;798(1):115–26.

    PubMed  CAS  Google Scholar 

  19. Takemoto S, Yamaoka K, Nishikawa M, Takakura Y. Histogram analysis of pharmacokinetic parameters by bootstrap resampling from one-point sampling data in animal experiments. Drug Metab Pharmacokinet. 2006;21(6):458–64.

    Article  PubMed  CAS  Google Scholar 

  20. Bailer AJ. Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm. 1988;16(3):303–9.

    Article  PubMed  CAS  Google Scholar 

  21. J Jagger. Why solar-ultraviolet photobiology? In: Solar-UV actions on living cells. New York: Plaeger Scientific. 1985;pp 1–10.

  22. Spielmann H, Liebsch M, Doring B, Moldenhauer F. First results of an EC/COLIPA validation project of in vitro phototoxicity testing methods. ALTEX. 1994;11(1):22–31.

    PubMed  Google Scholar 

  23. Liebsch M, Spielmann H. Currently available in vitro methods used in the regulatory toxicology. Toxicol Lett. 2002;127(1–3):127–34.

    Article  PubMed  CAS  Google Scholar 

  24. Organisation for Economic Co-operation and Development. OECD guideline for testing of chemicals, 432, In vitro 3T3 NRU phototoxicity test. Paris: Organization for Economic Cooperation and Development; 2004.

  25. Chetelat AA, Albertini S, Gocke E. The photomutagenicity of fluoroquinolones in tests for gene mutation, chromosomal aberration, gene conversion and DNA breakage (Comet assay). Mutagenesis. 1996;11(5):497–504.

    Article  PubMed  CAS  Google Scholar 

  26. Condorelli G, de Guidi G, Giuffrida S, Miano P, Sortino S, Velardita A. Membrane and DNA damage photosensitized by fluoroquinolone antimicrobial agents: a comparative screening. Med Environ. 1996;24:103–10.

    CAS  Google Scholar 

  27. Vallet VL, Bosca F, Miranda MA. Photosensitized DNA damage: the case of fluoroquinolones. Photochem Photobiol. 2009;85(4):861–8.

    Article  Google Scholar 

  28. Sauvaigo S, Douki T, Odin F, Caillat S, Ravanat JL, Cadet J. Analysis of fluoroquinolone-mediated photosensitization of 2′-deoxyguanosine, calf thymus and cellular DNA: determination of type-I, type-II and triplet-triplet energy transfer mechanism contribution. Photochem Photobiol. 2001;73(3):230–7.

    Article  PubMed  CAS  Google Scholar 

  29. He K, Qian M, Wong H, Bai SA, He B, Brogdon B, et al. N-in-1 dosing pharmacokinetics in drug discovery: experience, theoretical and practical considerations. J Pharm Sci. 2008;97(7):2568–80.

    Article  PubMed  CAS  Google Scholar 

  30. Proksch JW, Ward KW. Cassette dosing pharmacokinetic studies for evaluation of ophthalmic drugs for posterior ocular diseases. J Pharm Sci. 2008;97(8):3411–21.

    Article  PubMed  CAS  Google Scholar 

  31. Wolfson JS, Hooper DC. Fluoroquinolone antimicrobial agents. Clin Microbiol Rev. 1989;2(4):378–424.

    PubMed  CAS  Google Scholar 

  32. Crumplin GC, Kenwright M, Hirst T. Investigations into the mechanism of action of the antibacterial agent norfloxacin. J Antimicrob Chemother. 1984;13(Suppl B):9–23.

    PubMed  CAS  Google Scholar 

  33. Chow RT, Dougherty TJ, Fraimow HS, Bellin EY, Miller MH. Association between early inhibition of DNA synthesis and the MICs and MBCs of carboxyquinolone antimicrobial agents for wild-type and mutant [gyrA nfxB(ompF) acrA] Escherichia coli K-12. Antimicrob Agents Chemother. 1988;32(8):1113–8.

    PubMed  CAS  Google Scholar 

  34. Lipsky BA, Baker CA. Fluoroquinolone toxicity profiles: a review focusing on newer agents. Clin Infect Dis. 1999;28(2):352–64.

    Article  PubMed  CAS  Google Scholar 

  35. Grasela DM. Clinical pharmacology of gatifloxacin, a new fluoroquinolone. Clin Infect Dis. 2000;31 Suppl 2:S51–8.

    Article  PubMed  CAS  Google Scholar 

  36. Domagala JM. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother. 1994;33(4):685–706.

    Article  PubMed  CAS  Google Scholar 

  37. Hayashi N, Nakata Y, Yazaki A. New findings on the structure-phototoxicity relationship and photostability of fluoroquinolones with various substituents at position 1. Antimicrob Agents Chemother. 2004;48(3):799–803.

    Article  PubMed  CAS  Google Scholar 

  38. United States Department of Health and Human Services, Food and Drug Administration. Center for Drug Evaluation and Research (CDER) Guidance for Industry, Photosafety Testing. 2002.

  39. The European Agency for the Evaluation of Medicinal Products, Evaluation of Medicines for Human Use, Committee for Proprietary Medicinal Products. Note for Guidance on Photosafety Testing, CPMP/SWP/398/01. 2002.

  40. The European Agency for the Evaluation of Medicinal Products, Evaluation of Medicines for Human Use, Committee for Proprietary Medicinal Products. Concept Paper on the Need for Revision of the Note for Guidance on Photosafety testing, CPMP/SWP/398/01. 2008.

  41. Lynch AM, Wilcox P. Review of the performance of the 3T3 NRU in vitro phototoxicity assay in the pharmaceutical industry. Exp Toxicol Pathol. 2011;63(3):209–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid from the Food Safety Commission, Japan (no. 0807) and a Health Labour Sciences Research Grant from The Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satomi Onoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seto, Y., Inoue, R., Ochi, M. et al. Combined Use of In Vitro Phototoxic Assessments and Cassette Dosing Pharmacokinetic Study for Phototoxicity Characterization of Fluoroquinolones. AAPS J 13, 482–492 (2011). https://doi.org/10.1208/s12248-011-9292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-011-9292-7

Key words

Navigation