Skip to main content
Log in

Computational model of insulin-glucose regulatory system to represent type 1 diabetes mellitus, hypoglycemia and hyperinsulinemia

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is probably one of the most popular diseases among people. In this disorder, a malfunction occurs in the insulin-glucose regulatory system. To model the DM pathophysiology, we propose a computational model for the insulin-glucose regulatory system. In this differential equation model, the complex behavior of this biological system has been considered. This model shows chaos and bifurcating properties which have been seen in dynamical diseases. We have analyzed static and dynamical properties of the proposed model to show its strength and capability to represent different types of diabetes and other dysfunction in the insulin-glucose system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.V. Röder, et al.,, Exp. Mol. Med. 48 (2016) e219.

    Article  Google Scholar 

  2. M. Brissova, et al.,, J. Histochem. Cytochem. 53 (2005) 1087.

    Article  Google Scholar 

  3. K.M. Bullard, et al.,, Morb. Mortal. Weekly Rep. 67 (2018) 359.

    Article  Google Scholar 

  4. N.D.D. Group, Diabetes 28 (1979) 1039.

    Article  Google Scholar 

  5. Z. Xie, C. Chang, Z. Zhou, Clinic Rev, Allerg. Immunol. 47 (2014) 174.

    Google Scholar 

  6. S.E. Kahn, R.L. Hull, K.M. Utzschneider, Nature 444 (2006) 840.

    Article  ADS  Google Scholar 

  7. A.D. Association, Diabetes Care 27 (2004) s88.

    Article  Google Scholar 

  8. L. Bellamy, et al.,, The Lancet 373 (2009) 1773.

    Article  Google Scholar 

  9. P.E. Cryer, S.N. Davis, H. Shamoon, Diabetes Care 26 (2003) 1902.

    Article  Google Scholar 

  10. G.E. Umpierrez, et al.,, J. Clin. Endocrinol. Metab. 87, 978 (2002).

    Article  Google Scholar 

  11. M. Modan, et al.,, J. Clin. Invest. 75, 809 (1985).

    Article  Google Scholar 

  12. E. Ackerman, J.W. Rosevear, W.F. McGuckin, Phys. Med. Biol. 9, 203 (1964).

    Article  Google Scholar 

  13. J. Bajaj, et al.,, J. Theor. Biol. 126, 491 (1987).

    Article  Google Scholar 

  14. D. Bennett, S. Gourley, Dyn. Syst. 19, 109 (2004).

    Article  MathSciNet  Google Scholar 

  15. K. Engelborghs, et al.,, J. Math. Biol. 42, 361 (2001).

    Article  MathSciNet  Google Scholar 

  16. L. Pei, Q. Wang, H. Shi, Nonlinear Dyn. 63, 417 (2011).

    Article  Google Scholar 

  17. Y. Lenbury, S. Ruktamatakul, S. Amornsamarnkul, Biosystems 59, 15 (2001).

    Article  Google Scholar 

  18. P.S. Shabestari, et al.,, Chaos Solitons Fractals 112, 44 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Iokibe, M. Yoneda, K. KakitaChaos based blood glucose prediction and insulin adjustment for diabetes mellitus, in IEEE EMBS Asian-Pacific Conference on Biomedical Engineering, 2003 (IEEE, 2003).

  20. P.S. Shabestari, et al.,, Complexity 2018 (2018).

  21. J.C. Sprott, Elegant chaos: algebraically simple chaotic flows (World Scientific, 2010).

  22. P. Faure, H. Korn, Comptes Rendus de l’Académie des Sciences-Series III - Sciences de la Vie 324, 773 (2001).

    ADS  Google Scholar 

  23. H. Korn, P. Faure, Comptes Rendus Biologies 326, 787 (2003).

    Article  Google Scholar 

  24. H. Preissl, W. Lutzenberger, F. Pulvermüller, Behav. Brain Sci. 19, 307 (1996).

    Article  Google Scholar 

  25. H. Kantz, T. Schreiber, in Nonlinear time series analysis (Cambridge University Press, 2004), Vol. 7.

  26. M.G. Signorini, et al. Nonlinear noise reduction for the analysis of heart rate variability signals in normal and heart transplanted subjects, in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,“Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No. 97CH36136) (IEEE, 1997)

  27. O.V. Sosnovtseva, et al.Bimodal dynamics in nephron autoregulation, in 2003 IEEE International Workshop on Workload Characterization(IEEE Cat. No. 03EX775) (IEEE, 2003).

  28. D.W. Crevier, M. Meister, J. Neurophysiol 79, 1869 (1998).

    Article  Google Scholar 

  29. M.C. Mackey, J.G. Milton, N.Y. Ann, Acad. Sci. 504, 16 (1987).

    Article  ADS  Google Scholar 

  30. F.W. Pagliuca, D.A. Melton, Development 140, 2472 (2013).

    Article  Google Scholar 

  31. I. Atwater, J. Rinzel, The β-cell bursting pattern and intracellular calcium, in Ionic channels in cells and model systems, Springer, 1986), pp. 353–362.

  32. T.R. Chay, J. Keizer, Biophys. J. 42, 181 (1983).

    Article  Google Scholar 

  33. T. Chay, J. Keizer, Biophys. J. 48, 815 (1985).

    Article  ADS  Google Scholar 

  34. A. Sherman, J. Rinzel, J. Keizer, Biophys. J. 54, 411 (1988).

    Article  Google Scholar 

  35. H. Yanai, et al.,, World J, Diabetes 6, 30 (2015).

    Google Scholar 

  36. I.R. Hsu, et al.,, Am. J. Clin. Nutr. 86, 867S (2007).

    Article  Google Scholar 

  37. J.A. Luchsinger, et al.,, Neurology 63, 1187 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mohammed Ali.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, A.M., Tahir, F.R. Computational model of insulin-glucose regulatory system to represent type 1 diabetes mellitus, hypoglycemia and hyperinsulinemia. Eur. Phys. J. Spec. Top. 229, 943–952 (2020). https://doi.org/10.1140/epjst/e2020-900098-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900098-6

Navigation