Skip to main content
Log in

Performance of state-of-the-art force fields for atomistic simulations of silicon at high electronic temperatures

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Intensive femtosecond laser pulses or ion bombardment drives Silicon (Si) into a nonequilibrium state with hot electrons and cold ions. Since ab initio molecular dynamics (MD) simulations can only deal with at most 103 atoms, an analytical interatomic potential (or force field) is necessary for performing large-scale simulations describing Si in nonequilibrium. We recently constructed a potential for Si at high electronic temperatures Te’s, which was developed from ab initio MD simulations. In this study, we analyze the performance of this potential compared to other available Te-dependent Si potentials and to some widely used ground state Si potentials, which were adapted to nonequilibrium by fitting their parameters to ab initio MD simulations. We analyze the ability for reproducing nonthermal effects like thermal phonon squeezing and ultrafast melting in bulk Si as well as the expansion due to bond softening of a thin Si film. Our results show that the available Te-dependent potentials cannot quantitatively describe the latter. A much better description is given by the potentials with parameters fitted to ab initio MD simulations. Our proposed potential gives the best description among the studied ones, since its analytical shape was optimized for the ground and the laser excited state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bauerhenne, V.P. Lipp, T. Zier, E.S. Zijlstra, M.E. Garcia, arXiv:1812.08595 (2018)

  2. F. Courvoisier, P.-A. Lacourt, M. Jacquot, M.K. Bhuyan, L. Furfaro, J.M. Dudley, Opt. Lett. 34, 3163 (2009)

    Article  ADS  Google Scholar 

  3. R. Darkins, P.-W. Ma, S.T. Murphy, D.M. Duffy, Phys. Rev. B 98, 024304 (2018)

    Article  ADS  Google Scholar 

  4. B.W. Dodson, Phys. Rev. B 35, 2795 (1987)

    Article  ADS  Google Scholar 

  5. F. Ercolessi, J.B. Adams, Europhys. Lett. 26, 583 (1994)

    Article  ADS  Google Scholar 

  6. M. Harb, R. Ernstorfer, T. Dartigalongue, C.T. Hebeisen, R.E. Jordan, R.J.D. Miller, J. Phys. Chem. B 110, 25308 (2006)

    Article  Google Scholar 

  7. M. Harb, R. Ernstorfer, C.T. Hebeisen, G. Sciaini, W. Peng, T. Dartigalongue, M.A. Eriksson, M.G. Lagally, S.G. Kruglik, R.J.D. Miller, Phys. Rev. Lett. 100, 155504 (2008)

    Article  ADS  Google Scholar 

  8. S. Höhm, M. Herzlieb, A. Rosenfeld, J. Krüger, J. Bonse, Opt. Express 23, 61 (2015)

    Article  ADS  Google Scholar 

  9. S. Höhm, M. Rohloff, A. Rosenfeld, J. Krüger, J. Bonse, Appl. Phys. A 110, 553 (2013)

    Article  ADS  Google Scholar 

  10. D.S. Ivanov, V.P. Lipp, A. Blumenstein, F. Kleinwort, V.P. Veiko, E. Yakovlev, V. Roddatis, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Phys. Rev. Appl. 4, 064006 (2015)

    Article  ADS  Google Scholar 

  11. S. Khakshouri, D. Alfè, D.M. Duffy, Phys. Rev. B 78, 224304 (2008)

    Article  ADS  Google Scholar 

  12. I. Klett, T. Zier, B. Rethfeld, M.E. Garcia, E.S. Zijlstra, Phys. Rev. B 91, 144303 (2015)

    Article  ADS  Google Scholar 

  13. T. Kumagai, S. Izumi, S. Hara, S. Sakai, Comput. Mater. Sci. 39, 457 (2007)

    Article  Google Scholar 

  14. X. Liu, D. Du, G. Mourou, IEEE J. Quant. Electron. 33, 1706 (1997)

    Article  ADS  Google Scholar 

  15. N.D. Mermin, Phys. Rev. 137, A1441 (1965)

    Article  ADS  Google Scholar 

  16. J.A. Moriarty, R.Q. Hood, L.H. Yang, Phys. Rev. Lett. 108, 036401 (2012)

    Article  ADS  Google Scholar 

  17. S.T. Murphy, S.L. Daraszewicz, Y. Giret, M. Watkins, A.L. Shluger, K. Tanimura, D.M. Duffy, Phys. Rev. B 92, 134110 (2015)

    Article  ADS  Google Scholar 

  18. G.E. Norman, S.V. Starikov, V.V. Stegailov, J. Exp. Theor. Phys. 114, 792 (2012)

    Article  ADS  Google Scholar 

  19. D.F. Shanno, Math. Comp. 24, 647 (1970)

    Article  MathSciNet  Google Scholar 

  20. L. Shokeen, P.K. Schelling, Appl. Phys. Lett. 97, 151907 (2010)

    Article  ADS  Google Scholar 

  21. L. Shokeen, P.K. Schelling, J. Appl. Phys. 109, 073503 (2011)

    Article  ADS  Google Scholar 

  22. L. Shokeen, P.K. Schelling, Comput. Mater. Sci. 67, 316 (2013)

    Article  Google Scholar 

  23. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)

    Article  ADS  Google Scholar 

  24. F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985)

    Article  ADS  Google Scholar 

  25. J. Tersoff, Phys. Rev. Lett. 56, 632 (1986)

    Article  ADS  Google Scholar 

  26. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  27. J.A.V. Vechten, R. Tsu, F.W. Saris, Phys. Lett. A 74, 422 (1979)

    Article  ADS  Google Scholar 

  28. X.C. Wang, H.Y. Zheng, C.W. Tan, F. Wang, H.Y. Yu, K.L. Pey, Opt. Express 18, 19379 (2010)

    Article  ADS  Google Scholar 

  29. T. Zier, A. Kalitsov, E.S. Zijlstra, I. Theodonis, M.E. Garcia, Struct. Dyn. 2, 054101 (2015)

    Article  Google Scholar 

  30. T. Zier, E.S. Zijlstra, M.E. Garcia, Appl. Phys. A 117, 1 (2014)

    Article  ADS  Google Scholar 

  31. T. Zier, E.S. Zijlstra, M.E. Garcia, Phys. Rev. Lett. 116, 153901 (2016)

    Article  ADS  Google Scholar 

  32. T. Zier, E.S. Zijlstra, S. Krylow, M.E. Garcia, Appl. Phys. A 123, 625 (2017)

    Article  ADS  Google Scholar 

  33. E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Adv. Mater. 25, 5605 (2013)

    Article  Google Scholar 

  34. E.S. Zijlstra, A. Kalitsov, T. Zier, M.E. Garcia, Phys. Rev. X 3, 011005 (2013)

    Google Scholar 

  35. E.S. Zijlstra, T. Zier, B. Bauerhenne, S. Krylow, P.M. Geiger, M.E. Garcia, Appl. Phys. A 114, 1 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Bauerhenne.

Additional information

Supplementary material in form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjst/e2019-800181-3

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauerhenne, B., Garcia, M.E. Performance of state-of-the-art force fields for atomistic simulations of silicon at high electronic temperatures. Eur. Phys. J. Spec. Top. 227, 1615–1629 (2019). https://doi.org/10.1140/epjst/e2019-800181-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800181-3

Navigation