Skip to main content
Log in

Complex dynamics and multiple coexisting attractors in a fractional-order microscopic chemical system

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, we proposed a fractional-order microscopic chaotic system, derived from a set of microscopic chemical reactions. The dynamical properties of the proposed model have been investigated through Lyapunov characteristic exponents, bifurcation, spectral entropy and C0 complexity algorithm. The results show that the system has rich dynamics in derivative order and the system parameter. In addition, multiple coexisting attractors are found in the system by selecting appropriate initial values. Complexity measuring algorithms are developed as an effective tool for the detection of such attractors. The results are effective for the dynamical randomness in the collisional motion of atoms and molecules in fluids to produce the deterministic chemical chaos, even in fractional order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mukherjee, S.K. Palit, S. Banerjee et al., Physica A 439, 93 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Banerjee, S.K. Palit, S. Mukherjee et al., Chaos 26, 033105 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Banerjee, P. Saha, A.R. Chowdhury, Chaos 14, 347 (2004)

    Article  ADS  Google Scholar 

  4. S. Jeeva Sathya Theesar, P. Balasubramaniam, S. Banerjee, Chaos 22, 013102 (2012)

    Article  MathSciNet  Google Scholar 

  5. P. Saha, S. Banerjee, A.R. Chowdhury, Phys. Lett. A 326, 133 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Banerjee, L. Rondoni, S. Mukhopadhyay, Opt. Commun. 284, 4623 (2011)

    Article  ADS  Google Scholar 

  7. S. Banerjee, S. Mukhopadhyay, L. Rondoni, Opt. Lasers Eng. 50, 950 (2012)

    Article  Google Scholar 

  8. H. Natiq, S. Banerjee, S.B. He et al., Chaos Solit. Fract. 114, 506 (2018)

    Article  ADS  Google Scholar 

  9. W.H. Liu, K.H. Sun, C.X. Zhu, Opt. Lasers Eng. 84, 26 (2016)

    Article  Google Scholar 

  10. S. Vaidyanathan, A. Akgul, S. Kaçar, Eur. Phys. J. Plus 133, 46 (2018)

    Article  Google Scholar 

  11. J.G. Lu, G.R. Chen, Chaos Solit. Fract. 27, 685 (2006)

    Article  ADS  Google Scholar 

  12. S.B. He, K.H. Sun, H.H. Wang, Entropy 17, 8299 (2015)

    Article  ADS  Google Scholar 

  13. A. Asgharnia, R. Shahnazi, A. Jamali, ISA Trans. 79, 27 (2018)

    Article  Google Scholar 

  14. D.Y. Chen, R. Zhang, J.C. Sprott, Chaos 70, 1549 (2012)

    Google Scholar 

  15. S.B. He, K.H. Sun, H.H. Wang, Eur. Phys. J. Special Topics 225, 97 (2016)

    Article  ADS  Google Scholar 

  16. J.S. Long, Nonlinear Dyn. 65, 103 (2010)

    Google Scholar 

  17. A.N. Pisarchik, F. Ulrike, Phys. Rep. 540, 167 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. B.C. Bao, H. Bao, N. Wang, Chaos Solit. Fract. 94, 102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. C.B. Li, J.C. Sprott, W. Hu, Int. J. Bifurc. Chaos 27, 1750160 (2017)

    Article  Google Scholar 

  20. S. Jafari, A. Ahmadi, A.J.M. Khalaf, Int. J. Electr. Commun. 89, 131 (2018)

    Article  Google Scholar 

  21. V.T. Pham, S. Vaidyanathan, C.K. Volos, Eur. Phys. J. Special Topics 224, 1507 (2015)

    Article  ADS  Google Scholar 

  22. M. Shahzad, V.T. Pham, M.A. Ahmad, Eur. Phys. J. Special Topics 224, 1637 (2015)

    Article  ADS  Google Scholar 

  23. M.F Danca, Nonlinear Dyn. 86, 1263 (2016)

    Article  Google Scholar 

  24. M.F. Danca, Nonlinear Dyn. 89, 577 (2018)

    Article  MathSciNet  Google Scholar 

  25. C.B. Li, J.C. Sprott, Int. J. Bifurc. Chaos 24, 033108 (2014)

    Google Scholar 

  26. L. Gyorgyi, R.J. Field, Nature 355, 808 (1992)

    Article  ADS  Google Scholar 

  27. H. Wang, Q. Li, J. Chem. Phys. 108, 7555 (1998)

    Article  ADS  Google Scholar 

  28. H.L. Wang, Q.S. Li, J. Phys. Chem. A 104, 472 (2000)

    Article  Google Scholar 

  29. P. Gaspard, Physica A 264, 315 (1999)

    Article  ADS  Google Scholar 

  30. W.G. Xu, Q.S. Li, Chaos Solit. Fract. 15, 663 (2003)

    Article  ADS  Google Scholar 

  31. M. Berezowski, A. Grabski, Chaos Solit. Fract. 14, 97 (2002)

    Article  ADS  Google Scholar 

  32. M. Brøns, J. Sturis, Phys. Rev. E 64, 026209 (2001)

    Article  ADS  Google Scholar 

  33. M.A. Budroni, I. Calabrese, Y. Miele, Phys. Chem. Chem. Phys. 19, 32235 (2017)

    Article  Google Scholar 

  34. N.I. Koltsov, Russ. J. Phys. Chem. B 11, 1047 (2017)

    Article  Google Scholar 

  35. V.K. Yadav, S. Das, B.S. Bhadauria, Chin. J. Phys. 55, 594 (2017)

    Article  Google Scholar 

  36. M.A. Budroni, I. Calabrese, Y. Miele, Phys. Chem. Chem. Phys. 19, 32235 (2017)

    Article  Google Scholar 

  37. H.H. Sun, A. Abdelwahab, B. Onaral, IEEE Trans. Automatic Control 29, 441 (1984)

    Article  Google Scholar 

  38. E.H. Shen, Z.J. Cai, F.J. Gu, J, Appl. Math. Mech. 26, 1188 (2005)

    Article  Google Scholar 

  39. P.A. Phillip, F.L. Chiu, S.J. Nick, Phys. Rev. E 79, 011915 (2009)

    Article  Google Scholar 

  40. A.C. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics (Springer Verlag, Vienna, 1997)

  41. R. Garrappa (2012), https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-correctorpece-method-for-fractional-differential-equations?focused=5235405&tab=function

  42. M.F. Danca, M. Fečkan, N.V. Kuznetsov, Nonlinear Dyn. 92, 1061 (2018)

    Article  Google Scholar 

  43. V. Govorukhin (2004), http://www.math.rsu.ru/mexmat/kvm/matds/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santo Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Banerjee, S. & Sun, K. Complex dynamics and multiple coexisting attractors in a fractional-order microscopic chemical system. Eur. Phys. J. Spec. Top. 228, 195–207 (2019). https://doi.org/10.1140/epjst/e2019-800166-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800166-y

Navigation