Skip to main content
Log in

Existence results of fractional differential equations with Riesz–Caputo derivative

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper is concerned with a class of boundary value problems for fractional differential equations with the Riesz–Caputo derivative, which holds two-sided nonlocal effects. By means of a new fractional Gronwall inequalities and some fixed point theorems, we obtained some existence results of solutions. Three examples are given to illustrate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Podlubny, Fractional differential equations (Academic Press, San Diego, 1999)

  2. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations (Elsevier, Amsterdam, The Netherlands, 2006)

  3. Y. Zhou, F. Jiao, J. Li, Nonlinear Anal. 71, 3249 (2009)

    Article  MathSciNet  Google Scholar 

  4. Y. Zhou, Fract. Calculus Appl. Anal. 12, 195 (2009)

    MathSciNet  Google Scholar 

  5. F. Chen, J.J. Nieto, Y. Zhou, Nonlinear Anal. 13, 287 (2012)

    Article  Google Scholar 

  6. F. Chen, Y. Zhou, Fixed Point Theory 15, 43 (2014)

    ADS  MathSciNet  Google Scholar 

  7. X. Zhou, F. Yang, W. Jiang, Appl. Math. Comput. 257, 295 (2015)

    MathSciNet  Google Scholar 

  8. F. Xu, Bull. Malays. Math. Sci. Soc. 39, 571 (2016)

    Article  MathSciNet  Google Scholar 

  9. Y. Adjabi, F. Jarad, D. Baleanu, T. Abdeljawad, J. Comput. Anal. Appl. 21, 661 (2016)

    MathSciNet  Google Scholar 

  10. Y. Li, Y. Chen, I. Podlubny, Comput. Math. Appl. 59, 1810 (2010)

    Article  MathSciNet  Google Scholar 

  11. N. Aguila-Camacho, M.A. Duarte-Mermoud, J.A. Gallegos, Commun. Nonlinear Sci. Numer. Simulat. 19, 2951 (2014).

    Article  ADS  Google Scholar 

  12. J. Wang, X. Li, Mediterr. J. Math. 13, 625 (2016)

    Article  MathSciNet  Google Scholar 

  13. J. Wang, X. Li, Appl. Math. Comput. 258, 72 (2015)

    MathSciNet  Google Scholar 

  14. O.P. Agrawal, J. Phys. A 40, 6287 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. G.S.F.Frederico, D.F.M. Torres, Appl. Math. Comput. 217, 1023 (2010)

    MathSciNet  Google Scholar 

  16. R. Almeida, Appl. Math. Lett. 25, 142 (2012)

    Article  MathSciNet  Google Scholar 

  17. G. Wu, D. Baleanu, Z. Deng, S. Zeng, Physica A 438, 335 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Q. Yang, F. Liu, I. Turner, Appl. Math. Model. 34, 200 (2010)

    Article  MathSciNet  Google Scholar 

  19. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications (Gordon and Breach, New York, 1993)

  20. H. Ya, J. Gao, Y. Ding, J. Math. Anal. Appl. 328, 1075 (2007)

    Article  MathSciNet  Google Scholar 

  21. A. Granas, R.B. Guenther, J.W. Lee, J. Math. Pures Appl. 70, 153 (1991)

    MathSciNet  Google Scholar 

  22. J.K. Hale, Theory of function differential equations (Springer-Verlag, New York, 1977)

  23. J.M. Ortega, W.C. Rheinboldt, Iterative solution of nonlinear equation in several variables (Academic Press, New York, 1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Baleanu, D. & Wu, GC. Existence results of fractional differential equations with Riesz–Caputo derivative. Eur. Phys. J. Spec. Top. 226, 3411–3425 (2017). https://doi.org/10.1140/epjst/e2018-00030-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00030-6

Navigation