Skip to main content
Log in

A snapshot attractor view of the advection of inertial particles in the presence of history force

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We analyse the effect of the Basset history force on the sedimentation or rising of inertial particles in a two-dimensional convection flow. We find that the concept of snapshot attractors is useful to understand the extraordinary slow convergence due to long-term memory: an ensemble of particles converges exponentially fast towards a snapshot attractor, and this attractor undergoes a slow drift for long times. We demonstrate for the case of a periodic attractor that the drift of the snapshot attractor can be well characterized both in the space of the fluid and in the velocity space. For the case of quasiperiodic and chaotic dynamics we propose the use of the average settling velocity of the ensemble as a distinctive measure to characterize the snapshot attractor and the time scale separation corresponding to the convergence towards the snapshot attractor and its own slow dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Toegel, S. Luther, D. Lohse, Phys. Rev. Lett. 96, 114301 (2006)

    Article  ADS  Google Scholar 

  2. J.R. Angilella, Phys. Fluids 19, 073302 (2007)

    Article  ADS  Google Scholar 

  3. A. Daitche, T. Tél, Phys. Rev. Lett. 107, 244501 (2011)

    Article  ADS  Google Scholar 

  4. A. Daitche, J. Comput. Phys. 254, 93 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. K. Guseva, U. Feudel, T. Tél, Phys. Rev. E 88, 042909 (2013)

    Article  ADS  Google Scholar 

  6. S. Olivieri, F. Picano, G. Sardina, D. Iudicone, L. Brandt, Phys. Fluids 26, 041704 (2014)

    Article  ADS  Google Scholar 

  7. A. Daitche, T. Tél, New J. Phys. 16, 073008 (2014)

    Article  ADS  Google Scholar 

  8. L. Bergougnoux, G. Bouchet, D. Lopez, E. Guazzelli, Phys. Fluids 26, 093302 (2014)

    Article  ADS  Google Scholar 

  9. M. Farazmand, G. Haller, Nonlinear. Anal. 22, 98 (2015)

    Article  Google Scholar 

  10. A. Daitche, J. Fluid Mech. 782, 567 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Guseva, A. Daitche, U. Feudel, T. Tél, Phys. Rev. Fluids 1, 074203 (2016)

    Article  ADS  Google Scholar 

  12. J. Zahnow, U. Feudel, Phys. Rev. E 77, 026215 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.R. Maxey, J.J. Riley. Phys. Fluids 26, 883 (1983)

    Article  ADS  Google Scholar 

  14. R.J. Gatignol, Mech. Theor. Appl. 1, 143 (1983)

    Google Scholar 

  15. T.R. Auton, J.C.R. Hunt, M. Prud’Homme, J. Fluid Mech. 197, 241 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  16. M.R. Maxey, Phys. Fluids 30, 1915 (1987)

    Article  ADS  Google Scholar 

  17. T. Nishikawa, Z. Toroczkai, C. Grebogi, T. Tél, Phys. Rev. E 65, 026216 (2002)

    Article  ADS  Google Scholar 

  18. J. Zahnow, R.D. Vilela, U. Feudel, T. Tél, Phys. Rev. E 77, 055311 (2008)

    ADS  Google Scholar 

  19. J. Zahnow, R.D. Vilela, T. Tél, U. Feudel, Phys. Rev. E 80, 026311 (2009)

    Article  ADS  Google Scholar 

  20. R. Romeiras, C. Grebogi, E. Ott, Phys. Rev. A 41, 784 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.C. Sommerer, E. Ott, Science 259, 335 (1993)

    Article  ADS  Google Scholar 

  22. R. Serquina, Y.-C. Lai, G. Chen, Phys. Rev. E 77, 026208 (2008)

    Article  ADS  Google Scholar 

  23. M. Ghil, M.D. Chekroun, E. Simonnet, Physica D 327, 2111 (2008)

    Article  ADS  Google Scholar 

  24. T. Bodai, G. Károlyi, T. Tél, Nonlinear Process Geophys. 18, 573 (2011)

    Article  ADS  Google Scholar 

  25. M. Herein, G. Drótos, T. Haszpra, J. Márfy, T. Tél, Sci. Rep. 7, 44529 (2017)

    Article  ADS  Google Scholar 

  26. M. Vincze, Modeling Climate Change in the Laboratory, in Teaching Physics Innovatively, edited by A. Király, T. Tél (PhD School of Physics, Eötvös University, Budapest, 2016), pp. 107–118

  27. M. Vincze, I. D. Borcia, U. Harlander, Sci. Rep. 7, 254 (2017)

    Article  ADS  Google Scholar 

  28. A. Pikovsky, in Nonlinear and Turbulent Processes in Physics, Vol. 3, edited by R.Z. Sagdeev (Harwood Acad. Publ., Reading, 1984), pp. 1601–1604

  29. A. Pikovsky, Radiophys. Quantum Electron. 27, 576 (1984)

    Google Scholar 

  30. B. Kaszás, U. Feudel, T. Tél, Phys. Rev. E 94, 062221 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ksenia Guseva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guseva, K., Daitche, A. & Tél, T. A snapshot attractor view of the advection of inertial particles in the presence of history force. Eur. Phys. J. Spec. Top. 226, 2069–2078 (2017). https://doi.org/10.1140/epjst/e2017-70043-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70043-9

Navigation