Skip to main content
Log in

Different types of Lagrangian coherent structures formed by solid particles in three-dimensional time-periodic flows

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Modeling of the experments on formation of coherent structures (also called particle accumulation structures, or PAS) in a three-dimensional time-periodic flow in a finite-size liquid column driven by a combined effect of thermocapillary stress and buoyancy was performed. The exact experimental conditions were studied. We considered particles 1% denser than the fluid. Aiming at reproducing the observed variety of PAS, double-loop (SL-II) and asymmetric single-loop (ASL-I) structures were obtained along with a “conventional” symmetric single-loop PAS (SL-I). The observations are perfectly in line with the experiments. It is shown that the limit trajectory of a particle is not only a matter of the particle’s inertia but also of its initial location. We developed a method to calculate the formation time of a structure. The obtained values are very close to those experimentally measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Brown, A. Roshko, J. Fluid Mech. 64, 775 (1974)

    Article  ADS  Google Scholar 

  2. K.D. Squires, J.K. Eaton, Phys. Fluids A 3, 1169 (1991)

    Article  ADS  Google Scholar 

  3. S.K. Robinson, Annu. Rev. Fluid Mech. 23, 601 (1991)

    Article  ADS  Google Scholar 

  4. D. Schwabe, P. Hintz, S. Frank, Microgravity Sci. Technol. 9, 163 (1996)

    Google Scholar 

  5. D. Pushkin, D.E. Melnikov, V.M. Shevtsova, Phys. Rev. Lett. 106, 234501 (2011)

    Article  ADS  Google Scholar 

  6. M. Lappa, Chaos 23, 013105 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Lappa, Phys. Fluids 26, 093301 (2014)

    Article  ADS  Google Scholar 

  8. D. Schwabe, S. Frank, Adv. Space Res. 23, 1191 (1999)

    Article  ADS  Google Scholar 

  9. T. Sapsis, G. Haller, Chaos 20, 017515 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. D. Schwabe, A.I. Mizev, M. Udhayasankar, S. Tanaka, Phys. Fluids 19, 072102 (2007)

    Article  ADS  Google Scholar 

  11. H.C. Kuhlmann, Thermocapillary Convection in Models of Crystal Growth (Springer Tracts in Modern Physics, Springer, Berlin, Heidelberg, 1999), Vol. 152

  12. M.K. Smith, S.H. Davis, J. Fluid Mech. 132, 119 (1983)

    Article  ADS  Google Scholar 

  13. D.E. Melnikov, V.M. Shevtsova, Microgravity Sci. Technol. 21, 53 (2009)

    Article  ADS  Google Scholar 

  14. V.M. Shevtsova, D.E. Melnikov, A. Nepomnyashchy, Phys. Rev. Lett. 102, 134503 (2009)

    Article  ADS  Google Scholar 

  15. S. Tanaka, H. Kawamura, I. Ueno, D. Schwabe, Phys. Fluids 18, 067103 (2006)

    Article  ADS  Google Scholar 

  16. D.E. Melnikov, D. Pushkin, V.M. Shevtsova, Eur. Phys. J. Special Topics 192, 29 (2011)

    Article  ADS  Google Scholar 

  17. E. Hofmann, H.C. Kuhlmann, Phys. Fluids 23, 072106 (2011)

    Article  ADS  Google Scholar 

  18. D.E. Melnikov, D.O. Pushkin, V. Shevtsova, Phys. Fluids 25, 092108 (2013)

    Article  ADS  Google Scholar 

  19. H.D. Kuhlmann, F.H. Muldoon, Eur. Phys. J. Special Topics 219, 59 (2013)

    Article  ADS  Google Scholar 

  20. H.C. Kuhlmann, M. Lappa, D. Melnikov, R. Mukin, F.H. Muldoon, D. Pushkin, V. Shevtsova, I. Ueno, Fluid Dyn. Mater. Proc. 10, 1 (2014)

    Google Scholar 

  21. M. Gotoda, D.E. Melnikov, I. Ueno, V. Shevtsova, Chaos 26, 073106 (2016)

    Article  ADS  Google Scholar 

  22. F.H. Muldoon, H.C. Kuhlmann, Physica D 253, 40 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. I. Ueno, Y. Abe, K. Noguchi, H. Kawamura, Adv. Space Res. 41, 2145 (2008)

    Article  ADS  Google Scholar 

  24. H.C. Kuhlmann, R.V. Mukin, T. Sano, I. Ueno, Fluid Dyn. Res. 46, 041421 (2014)

    Article  ADS  Google Scholar 

  25. M. Lappa, Geophys. Astrophys. Fluid Dyn. 110, 348 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Lappa, Phys. Fluids 25, 012101 (2013)

    Article  ADS  Google Scholar 

  27. H.C. Kuhlmann, F.H. Muldoon, Phys. Rev. E 85, 046310 (2012)

    Article  ADS  Google Scholar 

  28. M. Pinsky, A. Khain, J. Aerosol Sci. 28, 1177 (1997)

    Article  Google Scholar 

  29. G. Falkovich, A. Fouxon, M.G. Stepanov, Nature 419, 151 (2002)

    Article  ADS  Google Scholar 

  30. V.M. Shevtsova, M. Mojahed, D.E. Melnikov, J.C. Legros, in Interfacial Fluid Dynamics and Transport Processes, Vol. 628, Lecture Notes in Physics, edited by R. Narayanan, D. Schwabe (Springer, 2003), p. 241

  31. D.E. Melnikov, V. Shevtsova, T. Yano, K. Nishino, Int. J. Heat and Mass Transfer 87, 119 (2015)

    Article  Google Scholar 

  32. V.M. Shevtsova, D.E. Melnikov, J.C. Legros, Phys. Fluids 13, 2851 (2001)

    Article  ADS  Google Scholar 

  33. V.M. Shevtsova, D.E. Melnikov, J.C. Legros, Phys. Rev. E 68, 066311 (2003)

    Article  ADS  Google Scholar 

  34. D.E. Melnikov, V.M. Shevtsova, J.C. Legros, Phys. Fluids 16, 1746 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Babiano, J.H.E. Cartwright, O. Piro, A. Provenzale, Phys. Rev. Lett. 84, 5764 (2000)

    Article  ADS  Google Scholar 

  36. M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983)

    Article  ADS  Google Scholar 

  37. D.E. Melnikov, T. Watanabe, T. Matsugase, I. Ueno, V. Shevtsova, Microgravity Sci. Technol. 26, 365 (2014)

    Article  ADS  Google Scholar 

  38. D.E. Melnikov, V.M. Shevtsova, FDMP Fluid Dyn. Mater. Proc. 1, 189 (2005)

    Google Scholar 

  39. M. Gotoda, T. Sano, T. Kaneko, I. Ueno, Eur. Phys. J. Special Topics 224, 299 (2015)

    Article  ADS  Google Scholar 

  40. F.H. Muldoon, H.C. Kuhlmann, Phys. Fluids 28, 073305 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis E. Melnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, D.E., Shevtsova, V. Different types of Lagrangian coherent structures formed by solid particles in three-dimensional time-periodic flows. Eur. Phys. J. Spec. Top. 226, 1239–1251 (2017). https://doi.org/10.1140/epjst/e2016-60191-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60191-x

Navigation