Skip to main content
Log in

Static polarizability effects on counterion distributions near charged dielectric surfaces: A coarse-grained Molecular Dynamics study employing the Drude model

  • Regular Article
  • Specific Models to Tackle Fundamental Questions
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Coarse-grained implicit solvent Molecular Dynamics (MD) simulations have been used to investigate the structure of the vicinal layer of polarizable counterions close to a charged interface. The classical Drude oscillator model was implemented to describe the static excess polarizability of the ions. The electrostatic layer correction with image charges (ELCIC) method was used to include the effects of the dielectric discontinuity between the aqueous solution and the bounding interfaces for the calculation of the electrostatic interactions. Cases with one or two charged bounding interfaces were investigated. The counterion density profile in the vicinity of the interfaces with different surface charge values was found to depend on the ionic polarizability. Ionic polarization effects are found to be relevant for ions with high excess polarizability near surfaces with high surface charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lyklema, Fundamentals of Interface and Colloidal Science (Academic London, 1995)

  2. R.H. French, V.A. Parsegian, R. Podgornik, R.F. Rajter, A. Jagota, J. Luo, D. Asthagiri, M.K. Chaudhury, Y. Chiang, S. Granick, S. Kalinin, M. Kardar, R. Kjellander, D.C. Langreth, J. Lewis, S. Lustig, D. Wesolowski, J.S. Wettlaufer, W. Ching, M. Finnis, F. Houlihan, O.A. von Lilienfeld, C.J. van Oss, T. Zemb, Rev. Mod. Phys. 82, 1887 (2010)

    Article  ADS  Google Scholar 

  3. Y. Levin, Rep. Prog. Phys. 65, 1577 (2002)

    Article  ADS  Google Scholar 

  4. T. Markovich, D. Andelman, R. Podgornik, Charged Membranes: Poisson-Boltzmann theory, DLVO paradigm and beyond, Chapter 9 in: Handbook of Lipid Membranes, edited by C. Safynia, J. Raedler (Taylor & Francis, 2016)

  5. A. Naji, M. Kanduč, R. Netz, R. Podgornik, Understanding Soft Condensed Matter via Modeling and Computation, Series in Soft Condensed Matter, Vol. 3, Chap. Exotic Electrostatics: Unusual Features of Electrostatics Interactions between Macroions (World Scientific, Singapore, 2010)

  6. A.Y. Grosberg, T.T. Nguyen, B.I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002)

    Article  ADS  Google Scholar 

  7. R. Messina, J. Phys.: Condens. Matter 21, 113102 (2009)

    ADS  Google Scholar 

  8. A. Naji, M. Kanduč, J. Forsman, R. Podgornik, J. Chem. Phys. 139, 150901 (2013)

    Article  ADS  Google Scholar 

  9. D. Antypov, M.C. Barbosa, C. Holm, Phys. Rev. E 71, 061106 (2005)

    Article  ADS  Google Scholar 

  10. G.I. Guerrero-García, E. González-Tovar, M. Chávez-Paéz, M. Louzada-Cassou, J. Chem. Phys. 132, 054903 (2010)

    Article  ADS  Google Scholar 

  11. A.P. dos Santos, A. Diehl, Y. Levin, J. Chem. Phys. 130, 124110 (2009)

    Article  ADS  Google Scholar 

  12. M. Louzada-Cassou, R. Saavedra-Barrera, D. Henderson, J. Chem. Phys. 77, 5150 (1982)

    Article  ADS  Google Scholar 

  13. A. Naji, S. Jungblut, A.G. Moreira, R. Netz, Phys. A Stat. Mech. Appl. 352, 131 (2005)

    Article  Google Scholar 

  14. S. Pianegonda, M.C. Barbosa, Y. Levin, Europhys. Lett. 71, 831 (2005)

    Article  ADS  Google Scholar 

  15. A. Diehl, Y. Levin, J. Chem. Phys. 125, 054902 (2006)

    Article  ADS  Google Scholar 

  16. A. Diehl, Y. Levin, J. Chem. Phys. 129, 124506 (2008)

    Article  ADS  Google Scholar 

  17. G.I. Guerrero-García, E. González-Tovar, M.O. de la Cruz, Soft Matter 6, 2056 (2010)

    Article  ADS  Google Scholar 

  18. A.P. dos Santos, A. Diehl, Y. Levin, J. Chem. Phys. 132, 104105 (2010)

    Article  ADS  Google Scholar 

  19. T. Das, D. Bratko, L.B. Bhuiyan, C.W. Outhwaite, J. Phys. Chem. 99, 410 (1995)

    Article  Google Scholar 

  20. M.C. Barbosa, M. Deserno, C. Holm, Europhys. Lett. 52, 80 (2000)

    Article  ADS  Google Scholar 

  21. D. Ben-Yakoov, D. Andelman, R. Podgornik, J. Chem. Phys. 134, 074705 (2011)

    Article  ADS  Google Scholar 

  22. D. Ben-Yakoov, D. Andelman, R. Podgornik, D. Harries, Curr. Opin. Colloid Interface Sci. 16, 542 (2011)

    Article  Google Scholar 

  23. D. Frydel, J. Chem. Phys. 134, 234704 (2011)

    Article  ADS  Google Scholar 

  24. Y. Levin, A.P. dos Santos, A. Diehl, Phys. Rev. Lett. 103, 257802 (2009)

    Article  ADS  Google Scholar 

  25. Y. Levin, Phys. Rev. Lett. 102, 147803 (2009)

    Article  ADS  Google Scholar 

  26. V. Jadhao, F.J. Solis, M.O. de la Cruz, Phys. Rev. Lett. 109, 223905 (2012)

    Article  ADS  Google Scholar 

  27. F. Fahrenberger, O.A. Hickey, J. Smiatek, C. Holm, Phys. Rev. Lett. 115, 118301 (2015)

    Article  ADS  Google Scholar 

  28. V. Démeri, D.A. Dean, R. Podgornik, J. Chem. Phys. 137, 174903 (2012)

    Article  ADS  Google Scholar 

  29. P. Linse, J. Phys. Chem. 90, 6821 (1986)

    Article  Google Scholar 

  30. R. Messina, J. Chem. Phys. 117, 11062 (2002)

    Article  ADS  Google Scholar 

  31. K. Barros, E. Luijten, Phys. Rev. Lett. 113, 017801 (2014)

    Article  ADS  Google Scholar 

  32. A. Bakhshandeh, A.P. dos Santos, Y. Levin, Phys. Rev. Lett. 107, 107801 (2011)

    Article  ADS  Google Scholar 

  33. J.R. Bordin, A. Diehl, M.C. Barbosa, Y. Levin, Phys. Rev. E 85, 031914 (2012)

    Article  ADS  Google Scholar 

  34. Z. Xu, W. Cai, X. Cheng, Commun. Comput. Phys. 9, 1056 (2010)

    Article  MathSciNet  Google Scholar 

  35. S. Tyagi, A. Arnold, C. Holm, J. Chem. Phys. 129, 204102 (2008)

    Article  ADS  Google Scholar 

  36. S. Tyagi, M. Suzen, M. Sega, M.C. Barbosa, S.S. Kantorovich, C. Holm, J. Chem. Phys. 132, 145112 (2010)

    Article  Google Scholar 

  37. F. Fahrenberger, Z. Xu, C. Holm, J. Chem. Phys. 141, 064902 (2014)

    Article  ADS  Google Scholar 

  38. F. Fahrenberger, C. Holm, Phys. Rev. E 90, 063304 (2014)

    Article  ADS  Google Scholar 

  39. F. Fahrenberger, O.A. Hickey, J. Smiatek, C. Holm, J. Chem. Phys. 143, 243140 (2015)

    Article  ADS  Google Scholar 

  40. Z. Wang, Y. Ma, J. Chem. Phys. 136, 234701 (2012)

    Article  ADS  Google Scholar 

  41. R. Messina, E.G. Tovar, M. Lozada-Cassou, C. Holm, Europhys. Lett. 60, 383 (2002)

    Article  ADS  Google Scholar 

  42. A. Martín-Molina, R. Hidalgo-Álvarez, M. Quesada-Pérez, J. Phys: Condens. Matter 21, 424105 (2009)

    ADS  Google Scholar 

  43. G. Lamoureux, B. Roux, J. Chem. Phys. 119, 3025 (2003)

    Article  ADS  Google Scholar 

  44. G. Lamoureux, E. Harder, I.V. Vorobyov, B. Roux, A.D. MacKerell, Chem. Phys. Lett. 418, 245 (2006)

    Article  ADS  Google Scholar 

  45. V.M. Anisimov, G. Lamoureux, I.V. Vorobyov, N. Huang, B. Roux, A.D. MacKerrel Jr., J. Chem. Theory Comput. 1, 153 (2005)

    Article  Google Scholar 

  46. W. Yu, P.E.M. Lopes, B. Roux, A.D. MacKerell Jr., J. Chem. Phys. 138, 034508 (2013)

    Article  ADS  Google Scholar 

  47. J.A. Lemkul, J. Huang, B. Roux, A.D. MacKerrel Jr., Chem. Rev. 116, 4983 (2016)

    Article  Google Scholar 

  48. B.T. Thole, Chem. Phys. 59, 341 (1981)

    Article  ADS  Google Scholar 

  49. G.L. Warren, S. Patel, J. Phys. Chem. C 112, 7455 (2008)

    Article  Google Scholar 

  50. H. Yu, T.W. Whitfield, E. Harder, G. Lamoureux, I.V. Vorobyov, V.M. Anisimov, A.D. MacKerrel Jr., B. Roux, J. Chem. Theory Comput. 6, 774 (2010)

    Article  Google Scholar 

  51. G. Archontis, E. Leontidis, G. Andreou, J. Phys. Chem. B 109, 17957 (2005)

    Article  Google Scholar 

  52. P.E.M. Lopes, J. Huang, J. Shim, Y. Luo, H. Li, B. Roux, A.D. MacKerrel Jr., J. Chem. Theory Comput. 9, 5430 (2013)

    Article  Google Scholar 

  53. A. Savelyev, A.D. MacKerrel Jr., J. Phys. Chem. B 118, 6742 (2014)

    Article  Google Scholar 

  54. C. Schröder, O. Steinhauser, J. Chem. Phys. 133, 154511 (2011)

    Article  Google Scholar 

  55. C. Schröder, Phys. Chem. Chem. Phys. 14, 3089 (2012)

    Article  Google Scholar 

  56. W.L. Jorgensen, J. Chem. Theory Comp. 3, 1877 (2007)

    Article  Google Scholar 

  57. H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006)

    Article  ADS  Google Scholar 

  58. A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Röhm, P. Košovan, C. Holm, in Lecture Notes in Computational Science and Engineering, 89, edited by M. Griebel, M.A. Schweitzer (Springer Berlin Heidelberg, 2013), p. 1

  59. A. Arnold, K. Breitsprecher, F. Fahrenberger, S. Kesselheim, O. Lenz, C. Holm, Entropy 15, 4569 (2013)

    Article  ADS  Google Scholar 

  60. M. Deserno, C. Holm, J. Chem. Phys. 109, 7678 (1998)

    Article  ADS  Google Scholar 

  61. P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

  62. W. Jiang, D.J. Hardy, J.C. Phillips, A.D. MacKerrel Jr., K. Schulten, B. Roux, J. Phys. Chem. Lett. 2, 87 (2011)

    Article  Google Scholar 

  63. J.A. Lemkul, B. Roux, D. van der Spoel, A.D. MacKerrel Jr., J. Comp. Chem. 36, 1473 (2015)

    Article  Google Scholar 

  64. C. Leung, H. Kinns, B.W. Hoogenboon, S. Howorka, P. Mesquisa, Nano Lett. 9, 2769 (2009)

    Article  ADS  Google Scholar 

  65. K. Umeda, K. Kobayashi, N. Oyabu, K. Matsishige, H. Yamada, Nanotech. 26, 285103 (2015)

    Article  Google Scholar 

  66. J.J. Molina, S. Lectez, S. Tazi, M. Salanne, J.-F. Dufrêche, J. Roques, E. Simoni, P.A. Madden, P. Turq, J. Chem. Phys. 134, 014511 (2011)

    Article  ADS  Google Scholar 

  67. M. Kanduč, A. Naji, J. Forsman, R. Podgornik, J. Chem. Phys. 137, 174704 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Rafael Bordin, Rudolf Podgornik or Christian Holm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordin, J., Podgornik, R. & Holm, C. Static polarizability effects on counterion distributions near charged dielectric surfaces: A coarse-grained Molecular Dynamics study employing the Drude model. Eur. Phys. J. Spec. Top. 225, 1693–1705 (2016). https://doi.org/10.1140/epjst/e2016-60150-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60150-1

Navigation